Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/102638
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineering-
dc.creatorChen, BYen_US
dc.creatorYuan, Hen_US
dc.creatorLi, Qen_US
dc.creatorShaw, SLen_US
dc.creatorLam, WHKen_US
dc.creatorChen, Xen_US
dc.date.accessioned2023-10-26T07:20:03Z-
dc.date.available2023-10-26T07:20:03Z-
dc.identifier.issn1365-8816en_US
dc.identifier.urihttp://hdl.handle.net/10397/102638-
dc.language.isoenen_US
dc.publisherTaylor & Francisen_US
dc.rights© 2015 Taylor & Francisen_US
dc.rightsThis is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Geographical Information Science on 05 Nov 2015 (published online), available at: http://www.tandfonline.com/10.1080/13658816.2015.1104317.en_US
dc.subjectCompressed linear referenceen_US
dc.subjectSpatiotemporal big dataen_US
dc.subjectSpatiotemporal data modelen_US
dc.subjectSpatiotemporal queryen_US
dc.subjectTime geographyen_US
dc.titleSpatiotemporal data model for network time geographic analysis in the era of big dataen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1041en_US
dc.identifier.epage1071en_US
dc.identifier.volume30en_US
dc.identifier.issue6en_US
dc.identifier.doi10.1080/13658816.2015.1104317en_US
dcterms.abstractThere has been a resurgence of interest in time geography studies due to emerging spatiotemporal big data in urban environments. However, the rapid increase in the volume, diversity, and intensity of spatiotemporal data poses a significant challenge with respect to the representation and computation of time geographic entities and relations in road networks. To address this challenge, a spatiotemporal data model is proposed in this article. The proposed spatiotemporal data model is based on a compressed linear reference (CLR) technique to transform network time geographic entities in three-dimensional (3D) (x, y, t) space to two-dimensional (2D) CLR space. Using the proposed spatiotemporal data model, network time geographic entities can be stored and managed in classical spatial databases. Efficient spatial operations and index structures can be directly utilized to implement spatiotemporal operations and queries for network time geographic entities in CLR space. To validate the proposed spatiotemporal data model, a prototype system is developed using existing 2D GIS techniques. A case study is performed using large-scale datasets of space-time paths and prisms. The case study indicates that the proposed spatiotemporal data model is effective and efficient for storing, managing, and querying large-scale datasets of network time geographic entities.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationInternational journal of geographical information science, 2016, v. 30, no. 6, p. 1041-1071en_US
dcterms.isPartOfInternational journal of geographical information scienceen_US
dcterms.issued2016-
dc.identifier.scopus2-s2.0-84961213451-
dc.identifier.eissn1362-3087en_US
dc.description.validate202310 bcch-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberCEE-2500-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6627355-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Lam_Spatiotemporal_Data_Model.pdfPre-Published version4.28 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

99
Last Week
4
Last month
Citations as of Dec 21, 2025

Downloads

39
Citations as of Dec 21, 2025

SCOPUSTM   
Citations

80
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

48
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.