Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/102628
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineeringen_US
dc.creatorHo, HWen_US
dc.creatorLam, WHKen_US
dc.creatorTam, MLen_US
dc.date.accessioned2023-10-26T07:19:59Z-
dc.date.available2023-10-26T07:19:59Z-
dc.identifier.isbn978-9-881-58146-4en_US
dc.identifier.urihttp://hdl.handle.net/10397/102628-
dc.description22nd International Conference of Hong Kong Society for Transportation Studies: Transport and Society, HKSTS 2017 - Hong Kong, 9-11 Dec 2017en_US
dc.language.isoenen_US
dc.publisherHong Kong Society for Transportation Studies Limiteden_US
dc.rightsReprinted from 22nd International Conference of Hong Kong Society for Transportation Studies: Transport and Society, HKSTS 2017, Ho, H. W., Lam, W. H., & Tam, M. L., Using link travel time co variance information to predict dynamic journey times in stochastic road networks, p. 159-166, Copyright (2017), with permission from Hong Kong Society for Transportation Studies.en_US
dc.subjectJourney time predictionen_US
dc.subjectEffective path journey timeen_US
dc.subjectDynamic traffic assignmenten_US
dc.subjectTravel time covarianceen_US
dc.subjectK-nearest neighborhooden_US
dc.titleUsing link travel time covariance information to predict dynamic journey times in stochastic road networksen_US
dc.typeConference Paperen_US
dc.identifier.spage159en_US
dc.identifier.epage166en_US
dcterms.abstractJourney time prediction is a crucial component in advanced traveler information systems for helping travelers in making their travel decisions. This paper investigates the journey time prediction problem in road network with stochastic journey times and link flows. The proposed prediction framework consists of two sub-modules. The first one is a reliability-based dynamic traffic assignment model to establish a database for the historical traffic conditions, while the other sub-module, which is a multi-level k-NN model for predicting journey times based on the historical records in the database. A Sioux Falls road network example is used to demonstrate the accuracy, efficiency and robustness of the proposed framework for the journey time prediction problem in stochastic network with uncertainties.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationTransport and Society : Proceeding of the 22nd International Conference of Hong Kong Society for Transportation Studies, HKSTS 2017, p. 159-166en_US
dcterms.issued2017-
dc.relation.ispartofbookTransport and Society : Proceeding of the 22nd International Conference of Hong Kong Society for Transportation Studies, HKSTS 2017en_US
dc.relation.conferenceInternational Conference of Hong Kong Society for Transportation Studies [HKSTS]en_US
dc.description.validate202310 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumberCEE-2386-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextResearch Institute for Sustainable Urban Development (RISUD) of Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS19491217-
dc.description.oaCategoryPublisher permissionen_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
Ho_Using_Link_Travel.pdf1.38 MBAdobe PDFView/Open
Open Access Information
Status open access
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

71
Citations as of Apr 14, 2025

Downloads

38
Citations as of Apr 14, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.