Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/102521
PIRA download icon_1.1View/Download Full Text
Title: Estimation of robustness of time integration algorithms for elasto-viscoplastic modeling of soils
Authors: Yin, ZY 
Li, J
Jin, YF 
Liu, FY
Issue Date: Feb-2019
Source: International journal of geomechanics, Feb. 2019, v. 19, no. 2, 04018197
Abstract: Time integration with stress-strain updating is a key step for the application of elasto-viscoplastic models to engineering practice. Currently, the estimation robustness of algorithms is lacking, which poses difficulties in the selection and improvement of algorithms. To solve this, the study selected four typical implicit time integration algorithms (i.e., Newton-Raphson, Katona, Stolle, and cutting plane) for the same simple elasto-viscoplastic modified Cam-clay model (EVP-MCC). Some necessary enhancements are discussed that were made for the integration. A series of laboratory tests was simulated, based on which the variations of the relative errors of stresses and iteration numbers with step size were investigated and compared. For the Newton-Raphson algorithm and the Katona algorithm with θ = 0:5; 1:0, the maximum step sizes ensuring convergence were found to be at least one order of magnitude larger than those of the other algorithms, and their total iteration numbers and relative errors of stresses were at least one order of magnitude lower than those of the other algorithms. Furthermore, the model using different algorithms was implemented in a finite-element code, and the global convergence and calculation time were investigated for a boundary-value problem. The robustness of all algorithms was estimated based on the calculation performance in terms of convergence, accuracy, and efficiency. The results demonstrate that the global iteration number for the cutting-plane algorithm is at least 20 times higher than the others at any mesh density, which leads to the result that the central processing unit (CPU) time for the cutting-plane algorithm is almost 10 times higher than the others. All comparisons demonstrate the performance of different time integration algorithms with a prior order of Newton-Raphson, Katona, Stolle, and cutting-plane algorithms.
Keywords: Finite-element analysis
Implicit integration
Overstress theory
Soils
Viscoplasticity
Publisher: American Society of Civil Engineers
Journal: International journal of geomechanics 
ISSN: 1532-3641
EISSN: 1943-5622
DOI: 10.1061/(ASCE)GM.1943-5622.0001351
Rights: © 2018 American Society of Civil Engineers.
This material may be downloaded for personal use only. Any other use requires prior permission of the American Society of Civil Engineers. This material may be found at https://ascelibrary.org/doi/10.1061/(ASCE)GM.1943-5622.0001351.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Yin_Estimation_Robustness_Time.pdfPre-Published version1.7 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

100
Last Week
4
Last month
Citations as of Nov 9, 2025

Downloads

85
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

16
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

14
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.