Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/102515
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineeringen_US
dc.creatorNair, GSen_US
dc.creatorBhat, CRen_US
dc.creatorPendyala, RMen_US
dc.creatorLoo, BPYen_US
dc.creatorLam, WHKen_US
dc.date.accessioned2023-10-26T07:19:04Z-
dc.date.available2023-10-26T07:19:04Z-
dc.identifier.issn0361-1981en_US
dc.identifier.urihttp://hdl.handle.net/10397/102515-
dc.language.isoenen_US
dc.publisherU.S. National Research Council, Transportation Research Boarden_US
dc.rightsThis is the accepted version of the publication Nair, G. S., Bhat, C. R., Pendyala, R. M., Loo, B. P. Y., & Lam, W. H. K. (2019). On the Use of Probit-Based Models for Ranking Data Analysis. Transportation Research Record, 2673(4), 229-240. Copyright © National Academy of Sciences: Transportation Research Board 2019. DOI: 10.1177/0361198119838987en_US
dc.titleOn the use of probit-based models for ranking data analysisen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage229en_US
dc.identifier.epage240en_US
dc.identifier.volume2673en_US
dc.identifier.issue4en_US
dc.identifier.doi10.1177/0361198119838987en_US
dcterms.abstractIn consumer surveys, more information per response regarding preferences of alternatives may be obtained if individuals are asked to rank alternatives instead of being asked to select only the most-preferred alternative. However, the latter method continues to be the common method of preference elicitation. This is because of the belief that ranking of alternatives is cognitively burdensome. In addition, the limited research on modeling ranking data has been based on the rank ordered logit (ROL) model. In this paper, we show that a rank ordered probit (ROP) model can better utilize ranking data information, and that the prevalent view of ranking data as not being reliable (because of the attenuation of model coefficients with rank depth) may be traced to the use of a misspecified ROL model rather than to any cognitive burden considerations.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationTransportation research record : journal of the Transportation Research Board, May 2019, v. 2673, no. 4, p. 229-240en_US
dcterms.isPartOfTransportation research record : journal of the Transportation Research Boarden_US
dcterms.issued2019-04-
dc.identifier.scopus2-s2.0-85064550470-
dc.description.validate202310 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberCEE-1416-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextCenter for Teaching Old Models New Tricks (TOMNET); Data-Supported Transportation Operations and Planning (D-STOP) Centeren_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS19409320-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Lam_Use_Probit-Based_Models.pdfPre-Published version1.53 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

107
Last Week
4
Last month
Citations as of Nov 9, 2025

Downloads

121
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

14
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

14
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.