Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/102494
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineeringen_US
dc.creatorBaral, Pen_US
dc.creatorRujikiatkamjorn, Cen_US
dc.creatorIndraratna, Ben_US
dc.creatorLeroueil, Sen_US
dc.creatorYin, JHen_US
dc.date.accessioned2023-10-26T07:18:54Z-
dc.date.available2023-10-26T07:18:54Z-
dc.identifier.issn1090-0241en_US
dc.identifier.urihttp://hdl.handle.net/10397/102494-
dc.language.isoenen_US
dc.publisherAmerican Society of Civil Engineersen_US
dc.rights© 2019 American Society of Civil Engineers.en_US
dc.rightsThis material may be downloaded for personal use only. Any other use requires prior permission of the American Society of Civil Engineers. This material may be found at https://ascelibrary.org/doi/10.1061/(ASCE)GT.1943-5606.0002100.en_US
dc.subjectCreep settlementen_US
dc.subjectIsotachesen_US
dc.subjectRadial consolidationen_US
dc.subjectViscosityen_US
dc.titleRadial consolidation analysis using delayed consolidation approachen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume145en_US
dc.identifier.issue10en_US
dc.identifier.doi10.1061/(ASCE)GT.1943-5606.0002100en_US
dcterms.abstractThe paper offers an analytical solution for radial consolidation that captures isotaches with a strain-rate dependency of preconsolidation pressure. These relationships are obtained based on constant-rate-of-strain (CRS) and long-term consolidation (LTC) tests and then used in the radial consolidation model incorporating the field strain rate, which is generally much lower compared with the typical laboratory environment. In this study, the calculated settlement and associated excess pore-water pressure are obtained using the equivalent preconsolidation pressure from the reference isotache within the (σp′/σp0′)-(ϵv) domain. Moreover, the change in Cα/Cc ratio (i.e., secondary compression index/compression index) with decreasing strain rate is used to calculate the long-term settlement. This method is then validated using various case histories in Australia and Southeast Asia, where excess pore-water pressure is dissipated at a slower rate in relation to the observed settlement.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of geotechnical and geoenvironmental engineering, Oct. 2019, v. 145, no. 10, 04019063en_US
dcterms.isPartOfJournal of geotechnical and geoenvironmental engineeringen_US
dcterms.issued2019-10-
dc.identifier.scopus2-s2.0-85069229265-
dc.identifier.eissn1943-5606en_US
dc.identifier.artn04019063en_US
dc.description.validate202310 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberCEE-1236-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextAustralian Governmenten_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS19748977-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Yin_Radial_Consolidation_Analysis.pdfPre-Published version1.66 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

96
Last Week
2
Last month
Citations as of Nov 9, 2025

Downloads

87
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

7
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

9
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.