Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/102493
PIRA download icon_1.1View/Download Full Text
Title: Grain rotation-based analysis method for shear band
Authors: Zhu, HX 
Yin, ZY 
Issue Date: Oct-2019
Source: Journal of engineering mechanics, Oct. 2019, v. 145, no. 10, 04019073
Abstract: The grain rotational field is significantly associated with the shear banding process and can be derived easily on the basis of individual grains, which could be an appropriate and convenient quantity in shear band analysis. In this paper, a novel method is proposed for directly analyzing the shear banding process in the granular assembly based on its grain rotational field. Numerical plain strain tests on a dense (S1) and an intermediate dense specimen (S2) are performed using the coupled discrete-element method (DEM) and finite-difference method (FDM). The grain rotational field is statistically characterized by the rotational distribution βv(ω), a new index defined as the volumetric percentage of grains rotating to a greater degree than the rotation ω, in which the high rotation (HR) section basically indicates the grains inside the shear band. A measurement of βv(ω)'s uniformity quantifies the degree of strain localization, and S2 is found to perform a more uniform rotational distribution than does S1. Taking the value of ω at which βv(ω)'s curvature is higher than a threshold as the boundary of the HR section, HR grains are filtered out of the sample, based on which the inclination and thickness of the shear band, as well as two local quantities (average void ratio and coordination number) inside the shear band, are analyzed.
Keywords: Biaxial test
Discrete-element method
Finite-difference method
Grain rotation
Granular materials
Shear band
Publisher: American Society of Civil Engineers
Journal: Journal of engineering mechanics 
ISSN: 0733-9399
EISSN: 1943-7889
DOI: 10.1061/(ASCE)EM.1943-7889.0001654
Rights: © 2019 American Society of Civil Engineers.
This material may be downloaded for personal use only. Any other use requires prior permission of the American Society of Civil Engineers. This material may be found at https://ascelibrary.org/doi/10.1061/(ASCE)EM.1943-7889.0001654.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Yin_Grain_Rotation-Based_Analysis.pdfPre-Published version3.76 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

93
Last Week
3
Last month
Citations as of Nov 9, 2025

Downloads

120
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

20
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

19
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.