Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/102487
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineeringen_US
dc.creatorZhai, Xen_US
dc.creatorHuang, Hen_US
dc.creatorXu, Pen_US
dc.creatorSze, NNen_US
dc.date.accessioned2023-10-26T07:18:50Z-
dc.date.available2023-10-26T07:18:50Z-
dc.identifier.issn2324-9935en_US
dc.identifier.urihttp://hdl.handle.net/10397/102487-
dc.language.isoenen_US
dc.publisherTaylor & Francisen_US
dc.rights© 2018 Hong Kong Society for Transportation Studies Limiteden_US
dc.rightsThis is an Accepted Manuscript of an article published by Taylor & Francis in Transportmetrica A: Transport Science on 10 Jul 2018 (published online), available at: http://www.tandfonline.com/10.1080/23249935.2018.1493550.en_US
dc.subjectModifiable areal unit problemen_US
dc.subjectMacro-level traffic safety analysisen_US
dc.subjectGeographical configurationen_US
dc.subjectCrash severityen_US
dc.titleThe influence of zonal configurations on macro-level crash modelingen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage417en_US
dc.identifier.epage434en_US
dc.identifier.volume15en_US
dc.identifier.issue2en_US
dc.identifier.doi10.1080/23249935.2018.1493550en_US
dcterms.abstractThis study investigated the impacts of zonal configurations on macro-level traffic safety analysis for crashes of different severity levels. Bayesian multivariate Poisson-lognormal models with multivariate conditional auto-regressive priors were developed to account for the spatial autocorrelation between adjacent geographical units and correlations among crash types of four ordinal severity levels, i.e. fatality, severe injury, slight injury and no injury. For the purpose of evaluating the effects of zonal configurations on macro-level traffic safety analysis, the proposed model was calibrated using crash data of four types of geographical units, i.e. block group, traffic analysis zone, census tract and zip code tabulation area, in Hillsborough County of Florida. The study empirically revealed the extensive presence and the significance of MAUP in macro-level safety analysis based on the existing zonal configurations. It gave out a warning and encouraged more research efforts on rational application of macroscopic safety analysis with different zonal configurations.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationTransportmetrica. A, Transport science, 2019, v. 15, no. 2, p. 417-434en_US
dcterms.isPartOfTransportmetrica. A, Transport scienceen_US
dcterms.issued2019-
dc.identifier.scopus2-s2.0-85049639389-
dc.identifier.eissn2324-9943en_US
dc.description.validate202310 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberCEE-1175-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; Natural Science Foundation of China; Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS20264690-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Sze_Influence_Zonal_Configurations.pdfPre-Published version1.09 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

105
Last Week
3
Last month
Citations as of Nov 9, 2025

Downloads

97
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

24
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

23
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.