Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/102413
PIRA download icon_1.1View/Download Full Text
Title: Intelligent model selection with updating parameters during staged excavation using optimization method
Authors: Jin, YF 
Yin, ZY 
Zhou, WH
Liu, X
Issue Date: Sep-2020
Source: Acta geotechnica, Sept 2020, v. 15, no. 9, p. 2473-2491
Abstract: Various constitutive models have been proposed, and previous studies focused on identifying parameters of specified models. To develop the smart construction, this paper proposes a novel optimization-based intelligent model selection procedure in which parameter identification is also performed during staged excavation. To conduct the model selection, a database of seven constitutive models accounting for isotropic or anisotropic yield surface, isotropic or anisotropic elasticity, or small strain stiffness for clayey soils is established, with each model numbered and deemed as one additional parameter for optimization. A newly developed real-coded genetic algorithm is adopted to evaluate the performance of simulation against field measurement. As the process of optimization goes on, the soil model exhibiting good performance during simulation survives from the database and model parameters are also optimized. For each excavation stage, with the selected model and optimized parameters, wall deflection and ground surface settlement of the subsequent unexcavated stage are predicted. The proposed procedure is repeated until the entire excavation is finished. This proposed procedure is applied to a real staged excavation with field data, which demonstrates its effectiveness and efficiency in engineering practice with highlighting the importance of anisotropic elasticity and small strain stiffness in simulating excavation. All results demonstrate that the current study has both academic significance and practical significance in providing an efficient and effective approach of adaptive optimization-based model selection with parameters updating in engineering applications.
Keywords: Clay
Constitutive relation
Excavation
Finite element method
Optimization
Parameter identification
Publisher: Springer
Journal: Acta geotechnica 
ISSN: 1861-1125
EISSN: 1861-1133
DOI: 10.1007/s11440-020-00936-6
Rights: © Springer-Verlag GmbH Germany, part of Springer Nature 2020
This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use(https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s11440-020-00936-6.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Jin_Intelligent_Model_Selection.pdfPre-Published version2.83 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

110
Last Week
4
Last month
Citations as of Nov 9, 2025

Downloads

74
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

42
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

40
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.