Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/102402
| DC Field | Value | Language |
|---|---|---|
| dc.contributor | Department of Civil and Environmental Engineering | en_US |
| dc.creator | Liu, C | en_US |
| dc.creator | Wang, H | en_US |
| dc.creator | Ma, Q | en_US |
| dc.creator | Ma, J | en_US |
| dc.creator | Wang, Z | en_US |
| dc.creator | Liang, L | en_US |
| dc.creator | Xu, W | en_US |
| dc.creator | Zhang, G | en_US |
| dc.creator | Zhang, X | en_US |
| dc.creator | Wang, T | en_US |
| dc.creator | He, H | en_US |
| dc.date.accessioned | 2023-10-26T07:18:07Z | - |
| dc.date.available | 2023-10-26T07:18:07Z | - |
| dc.identifier.issn | 0013-936X | en_US |
| dc.identifier.uri | http://hdl.handle.net/10397/102402 | - |
| dc.language.iso | en | en_US |
| dc.publisher | American Chemical Society | en_US |
| dc.rights | © 2020 American Chemical Society | en_US |
| dc.rights | This document is the Accepted Manuscript version of a Published Work that appeared in final form in Environmental science and technology, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://dx.doi.org/10.1021/acs.est.0c05071. | en_US |
| dc.title | Efficient conversion of NO to NO₂ on SO₂ -aged MgO under atmospheric conditions | en_US |
| dc.type | Journal/Magazine Article | en_US |
| dc.identifier.spage | 11848 | en_US |
| dc.identifier.epage | 11856 | en_US |
| dc.identifier.volume | 54 | en_US |
| dc.identifier.issue | 19 | en_US |
| dc.identifier.doi | 10.1021/acs.est.0c05071 | en_US |
| dcterms.abstract | The NO-NO2 cycle determines the formation of O3 and hence plays a critical role in the oxidizing capacity of troposphere. Traditional view concluded that the heterogeneous oxidation of NO to NO2 was negligible due to the weak reactivity of NO on aerosols, compared to the homogeneous oxidation process. However, the results here reported for the first time that SO2 can greatly promote the heterogeneous transformation of NO into NO2 and HONO on MgO particles under ambient conditions. The uptake coefficients of NO were increased by 2-3 orders of magnitudes on SO2-aged MgO, compared to the fresh sample. Based on spectroscopic characterization and density functional theory (DFT) calculations, the active sites for the adsorption and oxidation of NO were determined to be sulfates, where an intermediate [SO4-NO] complex was formed during the adsorption. The decomposition of this species led to the formation of NO2 and the change of sulfate configuration. The formed NO2 could further react with surface sulfite to form HONO and sulfate. The conversion of NO to NO2 and HONO on the SO2-aged MgO surface under ambient conditions contributes a new formation pathway of NO2 and HONO and could be quite helpful for understanding the source of atmospheric oxidizing capacity as well as the formation of air pollution complexes in polluted regions such as the northern China. | en_US |
| dcterms.accessRights | open access | en_US |
| dcterms.bibliographicCitation | Environmental science and technology, 6 Oct. 2020, v. 54, no. 19, p. 11848-11856 | en_US |
| dcterms.isPartOf | Environmental science and technology | en_US |
| dcterms.issued | 2020-10-06 | - |
| dc.identifier.scopus | 2-s2.0-85092681806 | - |
| dc.identifier.pmid | 32885975 | - |
| dc.identifier.eissn | 1520-5851 | en_US |
| dc.description.validate | 202310 bcch | en_US |
| dc.description.oa | Accepted Manuscript | en_US |
| dc.identifier.FolderNumber | CEE-0674 | - |
| dc.description.fundingSource | Others | en_US |
| dc.description.fundingText | National Natural Science Foundation of China | en_US |
| dc.description.pubStatus | Published | en_US |
| dc.identifier.OPUS | 37467524 | - |
| dc.description.oaCategory | Green (AAM) | en_US |
| Appears in Collections: | Journal/Magazine Article | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Wang_Efficient_Conversion_Atmospheric.pdf | Pre-Published version | 1.51 MB | Adobe PDF | View/Open |
Page views
148
Last Week
3
3
Last month
Citations as of Nov 9, 2025
Downloads
160
Citations as of Nov 9, 2025
SCOPUSTM
Citations
21
Citations as of Aug 22, 2025
WEB OF SCIENCETM
Citations
24
Citations as of Dec 18, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



