Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/102315
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineering-
dc.contributorResearch Institute for Advanced Manufacturing-
dc.contributorMainland Development Office-
dc.creatorLuo, Jen_US
dc.creatorSun, Wen_US
dc.creatorLiang, Den_US
dc.creatorYang, Wen_US
dc.creatorChan, KCen_US
dc.creatorRen, Fen_US
dc.creatorYang, XSen_US
dc.date.accessioned2023-10-18T07:51:06Z-
dc.date.available2023-10-18T07:51:06Z-
dc.identifier.issn0264-1275en_US
dc.identifier.urihttp://hdl.handle.net/10397/102315-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).en_US
dc.rightsThe following publication Luo, J., Sun, W., Liang, D., Yang, W., Chan, K. C., Ren, F., & Yang, X. S. (2023). An ultra-strong and ductile crystalline-amorphous nanostructured surface layer on TiZrHfTaNb0. 2 high-entropy alloy by laser surface processing. Materials & Design, 227, 111710 is availale at https://doi.org/10.1016/j.matdes.2023.111710.en_US
dc.subjectCrystalline-amorphous nanostructureen_US
dc.subjectHetero-nanostructureen_US
dc.subjectHigh-entropy alloyen_US
dc.subjectLaser surface remeltingen_US
dc.subjectMicro-pillar compression testsen_US
dc.titleAn ultra-strong and ductile crystalline-amorphous nanostructured surface layer on TiZrHfTaNb0.2 high-entropy alloy by laser surface processingen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume227en_US
dc.identifier.doi10.1016/j.matdes.2023.111710en_US
dcterms.abstractHeterogeneous crystalline-amorphous nanostructures have been documented to show superior strength-ductility synergy via the co-deformation cooperative effects of nanograins and amorphous grain boundaries. In this work, a facile laser surface remelting technique with rapid cooling rate was successfully developed to fabricate a ∼ 100 μm-thick gradient nanostructured layer accompanied by phase decomposition on a TiZrHfTaNb0.2 high-entropy alloy, where a ∼ 5 μm-thick crystalline-amorphous nanostructured top surface layer with an average grain size of ∼ 7 nm was obtained. Such crystalline-amorphous nanostructured layer shows an ultrahigh yield strength of ∼ 6.0 GPa and a compression strain of ∼ 25 % during the localized micro-pillar compression tests. The atomic observations reveal that co-deformation cooperative mechanisms include the well-retained dislocation activities in nanograins but crystallization in amorphous grain boundaries, which subsequently lead to the grain coarsening via grain boundary-mediated plasticity. This study sheds light on the development of high-performance high-entropy alloys with novel crystalline-amorphous nanostructures and provides significant insight into their plastic deformation mechanisms.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMaterials and design, Mar.2023, v. 227, 111710en_US
dcterms.isPartOfMaterials and designen_US
dcterms.issued2023-03-
dc.identifier.scopus2-s2.0-85147841914-
dc.identifier.eissn1873-4197en_US
dc.identifier.artn111710en_US
dc.description.validate202310 bcvc-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOS-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; Hong Kong Polytechnic University; Southern University of Science and Technology; Basic and Applied Basic Research Foundation of Guangdong Provinceen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
1-s2.0-S0264127523001259-main.pdf7.52 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

76
Citations as of Apr 14, 2025

Downloads

51
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

12
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

5
Citations as of Nov 14, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.