Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/102304
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.contributorResearch Institute for Smart Energyen_US
dc.creatorXie, Yen_US
dc.creatorLi, Cen_US
dc.creatorLi, Men_US
dc.creatorLiu, Fen_US
dc.creatorTaukenova, Men_US
dc.date.accessioned2023-10-18T07:51:01Z-
dc.date.available2023-10-18T07:51:01Z-
dc.identifier.urihttp://hdl.handle.net/10397/102304-
dc.language.isoenen_US
dc.publisherCell Pressen_US
dc.rights© 2022 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).en_US
dc.rightsThe following publication Xie, Y., Li, C., Li, M., Liu, F., & Taukenova, M. (2022). An overview of deterministic and probabilistic forecasting methods of wind energy. Iscience, 26(1), 105804 is availale at https://doi.org/10.1016/j.isci.2022.105804.en_US
dc.subjectEnergy engineeringen_US
dc.subjectEnergy modelingen_US
dc.subjectEnergy systemsen_US
dc.titleAn overview of deterministic and probabilistic forecasting methods of wind energyen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume26en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1016/j.isci.2022.105804en_US
dcterms.abstractIn recent years, a variety of wind forecasting models have been developed, prompting necessity to review the abundant methods to gain insights of the state-of-the-art development status. However, existing literature reviews only focus on a subclass of methods, such as multi-objective optimization and machine learning methods while lacking the full particulars of wind forecasting field. Furthermore, the classification of wind forecasting methods is unclear and incomplete, especially considering the rapid development of this field. Therefore, this article aims to provide a systematic review of the existing deterministic and probabilistic wind forecasting methods, from the perspectives of data source, model evaluation framework, technical background, theoretical basis, and model performance. It is expected that this work will provide junior researchers with broad and detailed information on wind forecasting for their future development of more accurate and practical wind forecasting models.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationiScience, 20 Jan. 2023, v. 26, no. 1, 105804en_US
dcterms.isPartOfiScienceen_US
dcterms.issued2023-01-20-
dc.identifier.scopus2-s2.0-85145241623-
dc.identifier.eissn2589-0042en_US
dc.identifier.artn105804en_US
dc.description.validate202310 bcvcen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOS-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; Natural Science Foundation of Hubei Province; Bureau of Science and Technology of Zhoushan; Key Research and Development Program of Hunan Province of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
1-s2.0-S2589004222020776-main.pdf3.88 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

138
Last Week
8
Last month
Citations as of Nov 9, 2025

Downloads

65
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

67
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

44
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.