Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/102265
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorSchool of Fashion and Textilesen_US
dc.creatorMa, Ken_US
dc.creatorLi, Pen_US
dc.creatorXin, JHen_US
dc.creatorChen, Yen_US
dc.creatorChen, Zen_US
dc.creatorGoswami, Sen_US
dc.creatorLiu, Xen_US
dc.creatorKato, Sen_US
dc.creatorChen, Hen_US
dc.creatorZhang, Xen_US
dc.creatorBai, Jen_US
dc.creatorWasson, MCen_US
dc.creatorMaldonado, RRen_US
dc.creatorSnurr, RQen_US
dc.creatorFarha, OKen_US
dc.date.accessioned2023-10-12T02:22:24Z-
dc.date.available2023-10-12T02:22:24Z-
dc.identifier.urihttp://hdl.handle.net/10397/102265-
dc.language.isoenen_US
dc.publisherCell Pressen_US
dc.rights© The Authorsen_US
dc.rightsThis is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).en_US
dc.rightsThe following publication Ma, K., Li, P., Xin, J. H., Chen, Y., Chen, Z., Goswami, S., ... & Farha, O. K. (2020). Ultrastable mesoporous hydrogen-bonded organic framework-based fiber composites toward mustard gas detoxification. Cell Reports Physical Science, 1(2), 100024 is available at https://doi.org/10.1016/j.xcrp.2020.100024.en_US
dc.titleUltrastable mesoporous hydrogen-bonded organic framework-based fiber composites toward mustard gas detoxificationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume1en_US
dc.identifier.issue2en_US
dc.identifier.doi10.1016/j.xcrp.2020.100024en_US
dcterms.abstractCreating crystalline porous materials with large pores is typically challenging due to undesired interpenetration, staggered stacking, or weakened framework stability. Here, we report a pore size expansion strategy by “shape-matching” intermolecular π-π stacking interactions in a series of two-dimensional (2D) hydrogen-bonded organic frameworks (HOFs), HOF-10x (x = 0,1,2), self-assembled from pyrene-based tectons with systematic elongation of π-conjugated molecular arms. This strategy successfully avoids interpenetration or staggered stacking and expands the pore size of HOF materials to access mesoporous HOF-102, which features a surface area of ∼2,500 m2/g and the largest pore volume (1.3 cm3/g) to date among all reported HOFs. More importantly, HOF-102 shows significantly enhanced thermal and chemical stability as evidenced by powder X-ray diffraction and N2 isotherms after treatments in challenging conditions. Such stability enables the easy fabrication of a HOF-102/fiber composite for the efficient photochemical detoxification of a mustard gas simulant.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationCell reports physical science, 26 Feb. 2020, v. 1, no. 2, 100024en_US
dcterms.isPartOfCell reports physical scienceen_US
dcterms.issued2020-02-26-
dc.identifier.scopus2-s2.0-85094640155-
dc.identifier.eissn2666-3864en_US
dc.identifier.artn100024en_US
dc.description.validate202310 bckwen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberITC-0945-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextDTRA; Northwestern University; Fudan Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS53772727-
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
1-s2.0-S266638642030014X-main.pdf3.74 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

150
Last Week
2
Last month
Citations as of Nov 9, 2025

Downloads

260
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

192
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

190
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.