Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/102213
PIRA download icon_1.1View/Download Full Text
Title: Full fabric sensing network with large deformation for continuous detection of skin temperature
Authors: Li, Q
Chen, H
Ran, ZY
Zhang, LN
Xiang, RF
Wang, X
Tao, XM 
Ding, X
Issue Date: Oct-2018
Source: Smart materials and structures, Oct. 2018, v. 27, no. 10, 105017
Abstract: Electronic textiles, created by the incorporation of electronics into textile substrates, are indispensable components of large-area wearable applications. This paper presents a full fabric based temperature sensor network comprised of discrete fabric temperature sensors and an elastic fabric circuit board (FCB). The fabric temperature sensor is made by integrating a continuous metal fiber into a woven structure that has an enhanced sensitivity (0.0039 °C-1), high accuracy (error: ±0.2 °C), superior resolution (0.05 °C), short response time, as well as almost no hysteresis, which far exceeds metal-coated thin films and composite materials in terms of the combination of these properties. Due to the large deformation capability of the FCB, the packaged assembly could maintain electrical integrity with a maximum strain of 40%, and withstand a fatigue life of at least 10 000 cycles at 30% strain, suggesting great promise for next-to-skin electronics. To demonstrate its applicability, a smart garment integrating this assembly has been used for in situ detection of skin temperature during respiration.
Keywords: Electronic textiles
Fabric sensing network
Fabric temperature sensors
Skin temperature
Publisher: Institute of Physics Publishing
Journal: Smart materials and structures 
ISSN: 0964-1726
EISSN: 1361-665X
DOI: 10.1088/1361-665X/aac0b8
Rights: © 2018 IOP Publishing Ltd
This is the Accepted Manuscript version of an article accepted for publication in Smart Materials and Structures. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/1361-665X/aac0b8.
This manuscript version is made available under the CC-BY-NC-ND 4.0 license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Tao_Full_Fabric_Sensing.pdfPre-Published version1.99 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

73
Citations as of Apr 14, 2025

Downloads

93
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

29
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

22
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.