Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/102026
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorChen, Jen_US
dc.creatorJiang, Ben_US
dc.creatorLi, Jen_US
dc.date.accessioned2023-10-10T07:34:10Z-
dc.date.available2023-10-10T07:34:10Z-
dc.identifier.issn1048-5252en_US
dc.identifier.urihttp://hdl.handle.net/10397/102026-
dc.language.isoenen_US
dc.publisherTaylor & Francisen_US
dc.rights© 2023 American Statistical Association and Taylor & Francisen_US
dc.rightsThis is an Accepted Manuscript of an article published by Taylor & Francis in Journal of Nonparametric Statistics on 22 May 2023 (Published online), available online: http://www.tandfonline.com/10.1080/10485252.2023.2215339.en_US
dc.subjectEndogeneityen_US
dc.subjectInstrumental variableen_US
dc.subjectModel averagingen_US
dc.subjectNonparametric regressionen_US
dc.subjectPenalty functionen_US
dc.subjectTwo-stage least squaresen_US
dc.titleNonparametric instrument model averagingen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage905en_US
dc.identifier.epage926en_US
dc.identifier.volume35en_US
dc.identifier.issue4en_US
dc.identifier.doi10.1080/10485252.2023.2215339en_US
dcterms.abstractWe present a new nonparametric model averaging approach to the instrumental variable (IV) regression where the effects of multiple instruments on the endogenous variable are modelled as nonparametric functions in the reduced form equations. Even if individual IVs may have weak and nonlinear relevance to the exposure, our proposed model averaging is able to ensemble their effects with optimal weights to produce valid inference. Our analysis covers both the case in which the number of IV is fixed and the case in which the dimension of IV is diverging with sample size. This novel framework can be especially beneficial to the practical situations involving weak IVs since in many recent observational studies we may encounter a large number of instruments and their quality could range from poor to strong. Numerical studies are carried out and comparisons are made between our proposed method and a wide range of existing alternative methods.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of nonparametric statistics, 2023, v. 35, no. 4, p. 905-926en_US
dcterms.isPartOfJournal of nonparametric statisticsen_US
dcterms.issued2023-
dc.identifier.scopus2-s2.0-85159931121-
dc.identifier.eissn1029-0311en_US
dc.description.validate202310 bcrcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2149b-
dc.identifier.SubFormID46794-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNSFC 12001459en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Nonparametric_Instrument_Model_Averaging.pdfPre-Published version453.52 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

116
Last Week
3
Last month
Citations as of Nov 9, 2025

Downloads

110
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

1
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

1
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.