Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/101910
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Biology and Chemical Technologyen_US
dc.contributorResearch Institute for Smart Energyen_US
dc.contributorResearch Institute for Intelligent Wearable Systemsen_US
dc.creatorSun, Men_US
dc.creatorHuang, Ben_US
dc.date.accessioned2023-09-22T06:58:37Z-
dc.date.available2023-09-22T06:58:37Z-
dc.identifier.issn2211-2855en_US
dc.identifier.urihttp://hdl.handle.net/10397/101910-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2022 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Sun, M., & Huang, B. (2022). Flexible modulations on selectivity of syngas formation via CO2 reduction on atomic catalysts. Nano Energy, 99, 107382 is available at https://dx.doi.org/10.1016/j.nanoen.2022.107382.en_US
dc.subjectAtomic catalysten_US
dc.subjectCO<sub>2</sub> reductionen_US
dc.subjectGraphdiyneen_US
dc.subjectSelectivityen_US
dc.subjectSyngas formationen_US
dc.titleFlexible modulations on selectivity of syngas formation via CO₂ reduction on atomic catalystsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume99en_US
dc.identifier.doi10.1016/j.nanoen.2022.107382en_US
dcterms.abstractElectrocatalysts with multi-active sites are significant to achieve the flexible selectivity modulation of syngas components to couple with different chemical productions. Compared to the complicated composite electrocatalyst to realize multi-active sites, Graphdiyne (GDY) based single atomic catalysts (SACs) have offered a simple approach through intrinsic electroactivity of the GDY and the variation of atomically dispersed metal. In this work, we have proposed a systematic investigation of syngas formation on the GDY-SACs. It is found that f and p orbitals of lanthanide and GDY are able to facilitate the adsorption of reactants CO2 and H2O, respectively, which flexibly control the CO: H2 ratios in syngas formation. Machine learning results indicate that solely relying on the adsorption energies leads to deviated selectivity. This indicates that a comprehensive understanding of thermodynamic preference and electronic structures is needed to achieve the highly accurate prediction of selectivity. This work has supplied an innovative understanding of the selectivity control in syngas formation, which benefits the future rational design of atomic catalysts for efficient CO2 reduction.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationNano energy, Aug. 2022, v. 99, 107382en_US
dcterms.isPartOfNano energyen_US
dcterms.issued2022-08-
dc.identifier.scopus2-s2.0-85130383450-
dc.identifier.eissn2211-3282en_US
dc.identifier.artn107382en_US
dc.description.validate202309 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2452a-
dc.identifier.SubFormID47704-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Sun_Flexible_Modulations_Selectivity.pdfPre-Published version2.14 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

103
Citations as of Nov 10, 2025

Downloads

22
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

15
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

8
Citations as of Sep 26, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.