Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/101865
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Biology and Chemical Technology-
dc.contributorDepartment of Applied Physics-
dc.contributorResearch Institute for Smart Energy-
dc.creatorYan, J-
dc.creatorGuo, X-
dc.creatorZhu, Y-
dc.creatorSong, Z-
dc.creatorLee, LYS-
dc.date.accessioned2023-09-20T04:40:57Z-
dc.date.available2023-09-20T04:40:57Z-
dc.identifier.issn2050-7488-
dc.identifier.urihttp://hdl.handle.net/10397/101865-
dc.language.isoenen_US
dc.publisherRoyal Society of Chemistryen_US
dc.rightsThis journal is © The Royal Society of Chemistry 2022en_US
dc.rightsThe following publication Yan, J., Guo, X., Zhu, Y., Song, Z., & Lee, L. Y. S. (2022). Solution-processed metal doping of sub-3 nm SnO 2 quantum wires for enhanced H 2 S sensing at low temperature. Journal of Materials Chemistry A, 10(29), 15657-15664 is available at https://doi.org/10.1039/D2TA03012H.en_US
dc.titleSolution-processed metal doping of sub-3 nm SnO₂ quantum wires for enhanced H₂S sensing at low temperatureen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage15657-
dc.identifier.epage15664-
dc.identifier.volume10-
dc.identifier.issue29-
dc.identifier.doi10.1039/d2ta03012h-
dcterms.abstractDoping a foreign atom into metal oxides enables the modulations of the electronic and chemical properties of active sites. SnO2 quantum wires (QWs) possessing large surface area with highly exposed active sites have been demonstrated as promising sensing materials in gas sensors but they still suffer from unsatisfactory selectivity and limits of detection (LODs). Herein, we realize the electronic interaction of transition metal atoms (Cr, Mo, and W) and sub-3 nm ultrathin SnO2 QWs using a general one-step solution process at low temperature (180 °C). Density functional theory calculations reveal that such tailored electronic structures reduce energy barriers for adsorption of gas molecules and transportation of electrons, which facilitates oxygen adsorption and activation, and thus accelerates surface reaction kinetics with H2S molecules. Our results indicate that transition metal doping induces more oxygen vacancies (VO) that lead to boosted H2S chemical-sensing performances. Representative W-doped SnO2 QWs (W–SnO2) achieve enhanced low-temperature H2S-sensing properties with a record LOD of down to 0.48 ppb, which surpasses most of the reported metal oxide-based gas sensors.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of materials chemistry A, 7 Aug. 2022, v. 10, no. 29, p. 15657-15664-
dcterms.isPartOfJournal of materials chemistry A-
dcterms.issued2022-08-
dc.identifier.scopus2-s2.0-85136581541-
dc.identifier.eissn2050-7496-
dc.description.validate202309 bcch-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2442en_US
dc.identifier.SubFormID47686en_US
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Yan_Solution-Processed_Metal_Doping.pdfPre-Published version3.07 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

88
Citations as of Apr 14, 2025

Downloads

73
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

24
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

9
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.