Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/101835
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Aeronautical and Aviation Engineeringen_US
dc.creatorWen, Wen_US
dc.creatorHsu, LTen_US
dc.date.accessioned2023-09-18T07:45:04Z-
dc.date.available2023-09-18T07:45:04Z-
dc.identifier.issn0028-1522en_US
dc.identifier.urihttp://hdl.handle.net/10397/101835-
dc.language.isoenen_US
dc.publisherWiley-Blackwell Publishing, Inc.en_US
dc.rights© 2022 Institute of Navigationen_US
dc.rightsThis is an open access article under the terms of the CC-BY 4.0 license (https://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication Wen, W., & Hsu, L. T. (2022). AGPC-SLAM: Absolute ground plane constrained 3D LiDAR SLAM. NAVIGATION: Journal of the Institute of Navigation, 69(3), navi.527 is available at https://doi.org/10.33012/navi.527.en_US
dc.subjectDynamic objecten_US
dc.subjectGround plane constrainten_US
dc.subjectLidar SLAMen_US
dc.subjectUrban canyonsen_US
dc.titleAGPC-SLAM : absolute ground plane constrained 3D lidar SLAMen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume69en_US
dc.identifier.issue3en_US
dc.identifier.doi10.33012/navi.527en_US
dcterms.abstract3D lidar-based simultaneous localization and mapping (SLAM) is a well-recognized solution for mapping and localization applications. However, the typical 3D lidar sensor (e.g., Velodyne HDL-32E) only provides a very limited field of view vertically. As a result, the vertical accuracy of pose estimation suffers. This paper aims to alleviate this problem by detecting the absolute ground plane to constrain vertical pose estimation. Different from the conventional relative plane constraint, this paper employs the absolute plane distance to refine the position in the z-axis and the norm vector of the ground plane to constrain the attitude drift. Finally, relative positioning from lidar odometry, constraint from ground plane detection, and loop closure are integrated under a proposed factor graph-based 3D lidar SLAM framework (AGPC-SLAM). The effectiveness is verified using several data sets collected in Hong Kong.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationNavigation, Fall 2022, v. 69, no. 3, navi.527en_US
dcterms.isPartOfNavigationen_US
dcterms.issued2022-
dc.identifier.scopus2-s2.0-85134617008-
dc.identifier.eissn2161-4296en_US
dc.identifier.artnnavi.527en_US
dc.description.validate202309 bcvcen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOS-
dc.description.fundingSourceNot mentionen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
navi.527.full.pdf5.58 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

119
Last Week
3
Last month
Citations as of Nov 9, 2025

Downloads

120
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

22
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

16
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.