Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/101735
DC Field | Value | Language |
---|---|---|
dc.contributor | Department of Applied Mathematics | en_US |
dc.creator | Fang, J | en_US |
dc.creator | Li, N | en_US |
dc.creator | Xu, C | en_US |
dc.date.accessioned | 2023-09-18T07:41:46Z | - |
dc.date.available | 2023-09-18T07:41:46Z | - |
dc.identifier.issn | 1547-1063 | en_US |
dc.identifier.uri | http://hdl.handle.net/10397/101735 | - |
dc.language.iso | en | en_US |
dc.publisher | American Institute of Mathematical Sciences | en_US |
dc.rights | ©2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0). | en_US |
dc.rights | The following publication Fang, J., Li, N., & Xu, C. (2022). A nonlocal population model for the invasion of Canada goldenrod. Mathematical Biosciences and Engineering, 19(10), 9915-9937 is available at https://doi.org/10.3934/mbe.2022462. | en_US |
dc.subject | Canada goldenrod | en_US |
dc.subject | Nonlocal dispersal | en_US |
dc.subject | Periodic delay | en_US |
dc.subject | Propagation dynamics | en_US |
dc.title | A nonlocal population model for the invasion of canada goldenrod | en_US |
dc.type | Journal/Magazine Article | en_US |
dc.identifier.spage | 9915 | en_US |
dc.identifier.epage | 9937 | en_US |
dc.identifier.volume | 19 | en_US |
dc.identifier.issue | 10 | en_US |
dc.identifier.doi | 10.3934/mbe.2022462 | en_US |
dcterms.abstract | A mathematical model for the population invasion of Canada goldenrod is proposed, with two reproductive modes, yearly periodic time delay and spatially nonlocal response caused by the influence of wind on the seeds. Under suitable conditions, we obtain the existence of the rightward and leftward invasion speeds and their coincidence with the minimal speeds of time periodic traveling waves. Furthermore, the invasion speeds are finite if the dispersal kernel of seeds is exponentially bounded and infinite if dispersal kernel is exponentially unbounded. | en_US |
dcterms.accessRights | open access | en_US |
dcterms.bibliographicCitation | Mathematical Biosciences and Engineering, 2022, v. 19, no. 10, p. 9915-9937 | en_US |
dcterms.isPartOf | Mathematical biosciences and engineering | en_US |
dcterms.issued | 2022 | - |
dc.identifier.scopus | 2-s2.0-85134483054 | - |
dc.description.validate | 202309 bcvc | en_US |
dc.description.oa | Version of Record | en_US |
dc.identifier.FolderNumber | OA_Scopus/WOS | - |
dc.description.fundingSource | Others | en_US |
dc.description.fundingText | NSF of China; Fundamental Research Funds for the Central Universities | en_US |
dc.description.pubStatus | Published | en_US |
dc.description.oaCategory | CC | en_US |
Appears in Collections: | Journal/Magazine Article |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
10.3934_mbe.2022462.pdf | 1.22 MB | Adobe PDF | View/Open |
Page views
69
Citations as of Apr 14, 2025
Downloads
45
Citations as of Apr 14, 2025

Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.