Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/101590
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Biology and Chemical Technologyen_US
dc.creatorHu, Jen_US
dc.creatorHuang, Ben_US
dc.creatorZhang, Cen_US
dc.creatorWang, Zen_US
dc.creatorAn, Yen_US
dc.creatorZhou, Den_US
dc.creatorLin, Hen_US
dc.creatorLeung, MKHen_US
dc.creatorYang, Sen_US
dc.date.accessioned2023-09-18T07:31:22Z-
dc.date.available2023-09-18T07:31:22Z-
dc.identifier.issn1754-5692en_US
dc.identifier.urihttp://hdl.handle.net/10397/101590-
dc.language.isoenen_US
dc.publisherRoyal Society of Chemistryen_US
dc.rightsThis journal is ©The Royal Society of Chemistry 2017en_US
dc.rightsThe following publication Hu, J., Huang, B., Zhang, C., Wang, Z., An, Y., Zhou, D., ... & Yang, S. (2017). Engineering stepped edge surface structures of MoS 2 sheet stacks to accelerate the hydrogen evolution reaction. Energy & Environmental Science, 10(2), 593-603 is available at https://doi.org/10.1039/c6ee03629e.en_US
dc.titleEngineering stepped edge surface structures of MoS2 sheet stacks to accelerate the hydrogen evolution reactionen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage593en_US
dc.identifier.epage603en_US
dc.identifier.volume10en_US
dc.identifier.issue2en_US
dc.identifier.doi10.1039/c6ee03629een_US
dcterms.abstractTwo-dimensional molybdenum sulfide is an attractive noble-metal-free electrocatalyst for the hydrogen evolution reaction (HER). Significant efforts have been made to increase the number of exposed edge sites. However, little attention has been paid to devising edge surface structures of MoS2 sheet stacks to promote the HER kinetics. Herein we report the first demonstration of significantly enhanced HER kinetics by controllably fabricating a stepped MoS2 surface structure. Vertical arrays of MoS2 sheets terminated with such a stepped surface structure have proved to be an outstanding HER electrocatalyst with an overpotential of 104 mV at 10 mA cm-2, an exchange current density of 0.2 mA cm-2 and high stability. Experimental and theoretical results indicate that the enhanced electrocatalytic activity of the vertical MoS2 arrays is associated with the unique vertically terminated, highly exposed, stepped surface structure with a nearly thermoneutral H-adsorption energy. This work opens a new avenue to designing and developing layered materials for electrochemical energy applications.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationEnergy and environmental science, 1 Feb. 2017, v. 10, no. 2, p. 593-603en_US
dcterms.isPartOfEnergy and environmental scienceen_US
dcterms.issued2017-02-01-
dc.identifier.scopus2-s2.0-85014410334-
dc.identifier.eissn1754-5706en_US
dc.description.validate202308 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberABCT-0670-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Nature Science Foundation of Anhui Province; Youth Innovation Promotion Association of Chinese Academy of Sciencesen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6727653-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Huang_Engineering_Stepped_Edge.pdfPre-Published version1.48 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

81
Citations as of Apr 14, 2025

Downloads

119
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

312
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

282
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.