Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/101541
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Biology and Chemical Technologyen_US
dc.creatorWang, Len_US
dc.creatorTsang, CSen_US
dc.creatorLiu, Wen_US
dc.creatorZhang, Xen_US
dc.creatorZhang, Ken_US
dc.creatorHa, Een_US
dc.creatorKwok, WMen_US
dc.creatorPark, JHen_US
dc.creatorLee, LYSen_US
dc.creatorWong, KYen_US
dc.date.accessioned2023-09-18T07:30:51Z-
dc.date.available2023-09-18T07:30:51Z-
dc.identifier.issn2050-7488en_US
dc.identifier.urihttp://hdl.handle.net/10397/101541-
dc.language.isoenen_US
dc.publisherRoyal Society of Chemistryen_US
dc.rightsThis journal is © The Royal Society of Chemistry 2019en_US
dc.rightsThe following publication Wang, L., Tsang, C. S., Liu, W., Zhang, X., Zhang, K., Ha, E., ... & Wong, K. Y. (2019). Disordered layers on WO 3 nanoparticles enable photochemical generation of hydrogen from water. Journal of Materials Chemistry A, 7(1), 221-227 is available at https://doi.org/10.1039/c8ta09446b.en_US
dc.titleDisordered layers on WO₃ nanoparticles enable photochemical generation of hydrogen from wateren_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage221en_US
dc.identifier.epage227en_US
dc.identifier.volume7en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1039/c8ta09446ben_US
dcterms.abstractTailored defects on a semiconductor surface can provide active catalytic sites and effectively tune the electronic structure for suitable optical properties. Herein, we report that surface modification of WO₃ with a disordered layer enables the photochemical hydrogen production from water. A simple room temperature solution process with lithium-ethylenediamine (Li-EDA) alters the surface of WO₃ with localized defects that form a thin disordered layer. Both structural and optical characterization reveal that such a disordered layer induces an upshift in the Fermi level and the elevation of the conduction band of WO₃ above the hydrogen reduction potential. Using an alkaline sacrificial agent, Li-EDA treated WO₃ shows a co-catalyst-free photochemical hydrogen evolution rate of 94.2 μmol g⁻¹ h⁻¹ under simulated sunlight. To the best of our knowledge, this is the first example of using WO₃ as a direct photocatalyst for hydrogen generation from water via simple surface defect engineering.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of materials chemistry A, 7 Jan. 2019, v. 7, no. 1, p. 221-227en_US
dcterms.isPartOfJournal of materials chemistry Aen_US
dcterms.issued2019-01-07-
dc.identifier.scopus2-s2.0-85058850957-
dc.identifier.eissn2050-7496en_US
dc.description.validate202308 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberABCT-0443-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Innovation and Technology Commission; The Hong Kong Polytechnic University; The National Natural Science Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS13237272-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Liu_Disordered_Layers_WO3.pdfPre-Published version1.26 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

79
Citations as of Apr 14, 2025

Downloads

70
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

73
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

61
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.