Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/101514
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Biology and Chemical Technology-
dc.creatorHo, DWHen_US
dc.creatorTsui, YMen_US
dc.creatorSze, KMFen_US
dc.creatorChan, LKen_US
dc.creatorCheung, TTen_US
dc.creatorLee, Een_US
dc.creatorSham, PCen_US
dc.creatorTsui, SKWen_US
dc.creatorLee, TKWen_US
dc.creatorNg, IOLen_US
dc.date.accessioned2023-09-18T07:30:36Z-
dc.date.available2023-09-18T07:30:36Z-
dc.identifier.urihttp://hdl.handle.net/10397/101514-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2019 Elsevier B.V. All rights reserved.en_US
dc.rights© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Ho, D. W. H., Tsui, Y. M., Sze, K. M. F., Chan, L. K., Cheung, T. T., Lee, E., ... & Ng, I. O. L. (2019). Single-cell transcriptomics reveals the landscape of intra-tumoral heterogeneity and stemness-related subpopulations in liver cancer. Cancer letters, 459, 176-185 is available at https://doi.org/10.1016/j.canlet.2019.06.002.en_US
dc.subjectCancer stem cellen_US
dc.subjectCancer stemnessen_US
dc.subjectHCCen_US
dc.subjectSingle-cell sequencingen_US
dc.subjectTumor heterogeneityen_US
dc.titleSingle-cell transcriptomics reveals the landscape of intra-tumoral heterogeneity and stemness-related subpopulations in liver canceren_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage176en_US
dc.identifier.epage185en_US
dc.identifier.volume459en_US
dc.identifier.doi10.1016/j.canlet.2019.06.002en_US
dcterms.abstractHepatocellular carcinoma (HCC) is heterogeneous, rendering its current curative treatments ineffective. The emergence of single-cell genomics represents a powerful strategy in delineating the complex molecular landscapes of cancers. In this study, we demonstrated the feasibility and merit of using single-cell RNA sequencing to dissect the intra-tumoral heterogeneity and analyze the single-cell transcriptomic landscape to detect rare cell subpopulations of significance. Exploration of the inter-relationship among liver cancer stem cell markers showed two distinct major cell populations according to EPCAM expression, and the EPCAM+ cells had upregulated expression of multiple oncogenes. We also identified a CD24+/CD44+-enriched cell subpopulation within the EPCAM+ cells which had specific signature genes and might indicate a novel stemness-related cell subclone in HCC. Notably, knockdown of signature gene CTSE for CD24+/CD44+ cells significantly reduced self-renewal ability on HCC cells in vitro and the stemness-related role of CTSE was further confirmed by in vivo tumorigenicity assays in nude mice. In summary, single-cell genomics is a useful tool to delineate HCC intratumoral heterogeneity at better resolution. It can identify rare but important cell subpopulations, and may guide better precision medicine in the long run.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationCancer letters, 10 Sept. 2019, v. 459, p. 176-185en_US
dcterms.isPartOfCancer lettersen_US
dcterms.issued2019-09-10-
dc.identifier.scopus2-s2.0-85067204652-
dc.identifier.pmid31195060-
dc.identifier.eissn0304-3835en_US
dc.description.validate202308 bckw-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberABCT-0361-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextInnovation and Technology Commission grant for State Key Laboratory of Liver Research; University Development Fund of The University of Hong Kongen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS22381554-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Lee_Single-Cell_Transcriptomics_Reveals.pdfPre-Published version876.69 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

68
Citations as of Apr 14, 2025

Downloads

230
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

135
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

129
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.