Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/101499
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Biology and Chemical Technologyen_US
dc.creatorZhang, Xen_US
dc.creatorHao, Wen_US
dc.creatorTsang, CSen_US
dc.creatorLiu, Men_US
dc.creatorHwang, GSen_US
dc.creatorLee, LYSen_US
dc.date.accessioned2023-09-18T07:30:25Z-
dc.date.available2023-09-18T07:30:25Z-
dc.identifier.urihttp://hdl.handle.net/10397/101499-
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.rights© 2019 American Chemical Societyen_US
dc.rightsThis document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Energy Materials, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acsaem.9b01790.en_US
dc.subjectBand structure engineeringen_US
dc.subjectOxygen vacancyen_US
dc.subjectPhase transitionen_US
dc.subjectPhotocatalytic hydrogen evolutionen_US
dc.subjectTungsten oxideen_US
dc.titlePsesudocubic phase tungsten oxide as a photocatalyst for hydrogen evolution reactionen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage8792en_US
dc.identifier.epage8800en_US
dc.identifier.volume2en_US
dc.identifier.issue12en_US
dc.identifier.doi10.1021/acsaem.9b01790en_US
dcterms.abstractDefect and phase engineering can effectively tune the activity of photocatalysts by altering their band structure and active site configuration. Herein, we report the phase-controlled synthesis of tungsten oxide (WO3) nanoplates via a wet-chemical approach. By adjusting the ratio of trioctylphosphine and trioctylphosphine oxide, oxygen vacancies are induced in WO3 at a relatively low temperature, accompanying the crystal structure transition from monoclinic to orthorhombic or pseudocubic phase. The experimental results and DFT calculations reveal that the increased oxygen vacant sites in WO3 lead to the upshift in both conduction band minimum and valence band maximum. The reformed band structure of reduced WO3 samples (WO3-x) enables the photocatalytic hydrogen evolution without cocatalyst at a maximum steady rate of 340 μmol g-1 h-1 under simulated sunlight. Our work demonstrates a simple and effective strategy of introducing oxygen vacancy to WO3 for band structure tuning, which may be further extended to other metal oxide systems.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationACS applied energy materials, 23 Dec. 2019, v. 2, no. 12, p. 8792-8800en_US
dcterms.isPartOfACS applied energy materialsen_US
dcterms.issued2019-12-23-
dc.identifier.scopus2-s2.0-85075551720-
dc.identifier.eissn2574-0962en_US
dc.description.validate202308 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberABCT-0326-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Innovation and Technology Commission of Hong Kong; The Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS20616201-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Zhang_Pseudocubic_Phase_Tungsten.pdfPre-Published version2.17 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

64
Citations as of Apr 14, 2025

Downloads

41
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

31
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

27
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.