Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/101492
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorTang, Hen_US
dc.creatorWang, ZAen_US
dc.date.accessioned2023-09-18T02:28:28Z-
dc.date.available2023-09-18T02:28:28Z-
dc.identifier.issn0219-1997en_US
dc.identifier.urihttp://hdl.handle.net/10397/101492-
dc.language.isoenen_US
dc.publisherWorld Scientific Publishing Co. Pte. Ltd.en_US
dc.rights© World Scientific Publishing Companyen_US
dc.rightsElectronic version of an article published as Communications in Contemporary Mathematics, 2250073, 2022, DOI: 10.1142/S0219199722500730 © World Scientific Publishing Company https://www.worldscientific.com/worldscinet/ccmen_US
dc.subjectStochastic aggregation-diffusion equationsen_US
dc.subjectRegularization effecten_US
dc.subjectGlobal existenceen_US
dc.subjectLarge-time behavioren_US
dc.titleStrong solutions to a nonlinear stochastic aggregation-diffusion equationen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationTitle on author’s file: CLASSICAL PATHWISE SOLUTIONS TO NONLINEAR STOCHASTIC AGGREGATION-DIFFUSION EQUATIONSen_US
dc.identifier.volume26en_US
dc.identifier.issue2en_US
dc.identifier.doi10.1142/S0219199722500730en_US
dcterms.abstractIt is well-known that solutions to deterministic nonlocal aggregation-diffusion models may blow up in two or higher dimensions. Various mechanisms hence have been proposed to “regularize” the deterministic aggregation-diffusion equations in a manner that allows pattern formation without blow-up. However, stochastic effect has not been ever considered among other things. In this work, we consider a nonlocal aggregation-diffusion model with multiplicative noise and establish the local existence and uniqueness of strong solutions on Rd(d≥2). If the noise is non-autonomous and linear, we establish the global existence and large-time behavior of strong solutions with decay properties by combining the Moser-Alikakos iteration technique and some decay estimates of Girsanov type processes. If the noise is nonlinear and strong enough, we show that blow-up can be prevented. As such, our results assert that certain multiplicative noise can also regularize the aggregation-diffusion model.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationCommunications in contemporary mathematics, 2024, v. 26, no. 2, 2250073en_US
dcterms.isPartOfCommunications in contemporary mathematicsen_US
dcterms.issued2024-
dc.identifier.eissn1793-6683en_US
dc.identifier.artn2250073en_US
dc.description.validate202309 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera2425-
dc.identifier.SubFormID47654-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Tang_Strong_Solutions_Nonlinear.pdfPre-Published version508.8 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

117
Last Week
1
Last month
Citations as of Nov 30, 2025

Downloads

180
Citations as of Nov 30, 2025

SCOPUSTM   
Citations

5
Citations as of Jun 21, 2024

WEB OF SCIENCETM
Citations

8
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.