Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/101435
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Biology and Chemical Technologyen_US
dc.creatorQiu, Cen_US
dc.creatorQian, Ken_US
dc.creatorYu, Jen_US
dc.creatorSun, Men_US
dc.creatorCao, Sen_US
dc.creatorGao, Jen_US
dc.creatorYu, Ren_US
dc.creatorFang, Len_US
dc.creatorYao, Yen_US
dc.creatorLu, Xen_US
dc.creatorLi, Ten_US
dc.creatorHuang, Ben_US
dc.creatorYang, Sen_US
dc.date.accessioned2023-09-18T02:25:47Z-
dc.date.available2023-09-18T02:25:47Z-
dc.identifier.issn2311-6706en_US
dc.identifier.urihttp://hdl.handle.net/10397/101435-
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights© The Author(s) 2022en_US
dc.rightsOpen Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.en_US
dc.rightsThe following publication Qiu, C., Qian, K., Yu, J., Sun, M., Cao, S., Gao, J., ... & Yang, S. (2022). MOF-transformed In2O3-x@C nanocorn electrocatalyst for efficient CO2 reduction to HCOOH. Nano-Micro Letters, 14(1), 167 is available at https://doi.org/10.1007/s40820-022-00913-6.en_US
dc.subjectActive sitesen_US
dc.subjectCO2 reductionen_US
dc.subjectCorn designen_US
dc.subjectFormateen_US
dc.subjectIndium oxideen_US
dc.titleMOF‑transformed In2O3‑x@C nanocorn electrocatalyst for efficient CO2 reduction to HCOOHen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume14en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1007/s40820-022-00913-6en_US
dcterms.abstractFor electrochemical CO2 reduction to HCOOH, an ongoing challenge is to design energy efficient electrocatalysts that can deliver a high HCOOH current density (J HCOOH) at a low overpotential. Indium oxide is good HCOOH production catalyst but with low conductivity. In this work, we report a unique corn design of In2O3-x@C nanocatalyst, wherein In2O3-x nanocube as the fine grains dispersed uniformly on the carbon nanorod cob, resulting in the enhanced conductivity. Excellent performance is achieved with 84% Faradaic efficiency (FE) and 11 mA cm−2 J HCOOH at a low potential of − 0.4 V versus RHE. At the current density of 100 mA cm−2, the applied potential remained stable for more than 120 h with the FE above 90%. Density functional theory calculations reveal that the abundant oxygen vacancy in In2O3-x has exposed more In3+ sites with activated electroactivity, which facilitates the formation of HCOO* intermediate. Operando X-ray absorption spectroscopy also confirms In3+ as the active site and the key intermediate of HCOO* during the process of CO2 reduction to HCOOH.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationNano-micro letters, Dec. 2022, v. 14, no. 1, 167en_US
dcterms.isPartOfNano-micro lettersen_US
dcterms.issued2022-12-
dc.identifier.scopus2-s2.0-85136151670-
dc.identifier.ros2022003014-
dc.identifier.eissn2150-5551en_US
dc.identifier.artn167en_US
dc.description.validate202309 bckwen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberCDCF_2022-2023, OA_Scopus/WOS-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNatural Science Foundation of China; Shenzhen Science and Technology Innovation Commission; Shenzhen Peacock Plan; Shenzhen-Hong Kong Innovation Circle United Research Project; Shanghai Jiao Tong Universityen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
s40820-022-00913-6.pdf5.15 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

105
Citations as of Nov 10, 2025

Downloads

30
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

75
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

72
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.