Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/101434
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Biology and Chemical Technologyen_US
dc.creatorLv, Hen_US
dc.creatorSun, Len_US
dc.creatorXu, Den_US
dc.creatorLi, Wen_US
dc.creatorHuang, Ben_US
dc.creatorLiu, Ben_US
dc.date.accessioned2023-09-18T02:25:47Z-
dc.date.available2023-09-18T02:25:47Z-
dc.identifier.urihttp://hdl.handle.net/10397/101434-
dc.language.isoenen_US
dc.publisherChinese Chemical Societyen_US
dc.rights© 2021 Chinese Chemical Societyen_US
dc.rightsThis work is licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported license (CC BY-NC 3.0) (https://creativecommons.org/licenses/by-nc/3.0/).en_US
dc.rightsThe following publication Lv, H., Sun, L., Xu, D., Li, W., Huang, B., & Liu, B. (2022). Precise Synthesis of Hollow Mesoporous Palladium–Sulfur Alloy Nanoparticles for Selective Catalytic Hydrogenation. CCS Chemistry, 4(8), 2854-2863 is available at https://doi.org/10.31635/ccschem.021.202101343.en_US
dc.subjectHollow cavityen_US
dc.subjectHydrogenationen_US
dc.subjectMesoporous materialen_US
dc.subjectPalladiumen_US
dc.subjectSelective catalysisen_US
dc.titlePrecise synthesis of hollow mesoporous palladium–sulfur alloy nanoparticles for selective catalytic hydrogenationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage2854en_US
dc.identifier.epage2863en_US
dc.identifier.volume4en_US
dc.identifier.issue8en_US
dc.identifier.doi10.31635/ccschem.021.202101343en_US
dcterms.abstractHollow mesoporous metals have unique potential for catalysis, but their precise synthesis and further elaboration of their structure–performance relationships are still huge challenges. Herein, we report a new synthetic strategy, named the Kirkendall effect in synergistic template (KEST), for the desired preparation of hollow mesoporous palladium–sulfur (h-mesoPdS) alloy nanoparticles. The KEST strategy combines the Kirkendall cavitation synthesis of hollow PdS alloys at the atomic level and the nanocasting growth of a highly ordered mesoporous framework at the mesoscopic level, resulting in one-step solid-phase synthesis of binary h-mesoPdS alloy nanoparticles under ambient conditions. The h-mesoPdS possesses hollow and mesoporous geometry as well as binary PdS alloy composition, which synergistically optimize their electronic structures and energetically adjust the hydrogenation reaction trends. The h-mesoPdS alloy nanoparticles show a remarkable selectivity of 94% for semi-hydrogenating 4-nitrophenylacetylene to industrially important 4-nitrostyrene without hydrogenating the nitro group or over-hydrogenating the alkynyl group. Because of the significant advances in both synthesis and catalysis, this work paves a new route for realizing the targeted synthesis of highly efficient nanomaterials in various applications.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationCCS chemistry, Aug. 2022, v. 4, no. 8, p. 2854-2863en_US
dcterms.isPartOfCCS chemistryen_US
dcterms.issued2022-08-
dc.identifier.scopus2-s2.0-85136186741-
dc.identifier.ros2022002506-
dc.identifier.eissn2096-5745en_US
dc.description.validate202309 bckwen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberCDCF_2022-2023-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Key R&D Program of China; Natural Science Foundation of China; Natural Science Foundation of Jiangsu Province; Open Project of State Key Laboratory of Supramolecular Structure and Materials; Fundamental Research Funds for the Central Universitiesen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
ccschem.021.202101343.pdf5.66 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

95
Last Week
2
Last month
Citations as of Nov 9, 2025

Downloads

85
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

42
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

45
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.