Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/101427
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Biomedical Engineeringen_US
dc.contributorDepartment of Applied Physicsen_US
dc.creatorZhang, Qen_US
dc.creatorYin, Ben_US
dc.creatorHao, Jen_US
dc.creatorMa, Len_US
dc.creatorHuang, Yen_US
dc.creatorShao, Xen_US
dc.creatorLi, Cen_US
dc.creatorChu, Zen_US
dc.creatorYi, Cen_US
dc.creatorWong, SHDen_US
dc.creatorYang, Men_US
dc.date.accessioned2023-09-18T02:25:42Z-
dc.date.available2023-09-18T02:25:42Z-
dc.identifier.issn2766-8541en_US
dc.identifier.urihttp://hdl.handle.net/10397/101427-
dc.language.isoenen_US
dc.publisherJohn Wiley & Sons, Inc.en_US
dc.rights© 2022 The Authors. Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.en_US
dc.rightsThis is an open access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en_US
dc.rightsThe following publication Zhang, Q., Yin, B., Hao, J., Ma, L., Huang, Y., Shao, X., ... & Yang, M. (2023). An AIEgen/graphene oxide nanocomposite (AIEgen@ GO)‐based two‐stage “turn‐on” nucleic acid biosensor for rapid detection of SARS‐CoV‐2 viral sequence. Aggregate, 4(1), e195 is available at https://doi.org/10.1002/agt2.195.en_US
dc.subjectAggregation-induced emission (AIE) luminogenen_US
dc.subjectGraphene oxideen_US
dc.subjectSARS-CoV-2 detectionen_US
dc.titleAn AIEgen/graphene oxide nanocomposite (AIEgen@GO)-based two-stage “turn-on” nucleic acid biosensor for rapid detection of SARS-CoV-2 viral sequenceen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume4en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1002/agt2.195en_US
dcterms.abstractThe ongoing outbreak of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic has posed significant challenges in early viral diagnosis. Hence, it is urgently desirable to develop a rapid, inexpensive, and sensitive method to aid point-of-care SARS-CoV-2 detection. In this work, we report a highly sequence-specific biosensor based on nanocomposites with aggregation-induced emission luminogens (AIEgen)-labeled oligonucleotide probes on graphene oxide nanosheets (AIEgen@GO) for one step-detection of SARS-CoV-2-specific nucleic acid sequences (Orf1ab or N genes). A dual “turn-on” mechanism based on AIEgen@GO was established for viral nucleic acids detection. Here, the first-stage fluorescence recovery was due to dissociation of the AIEgen from GO surface in the presence of target viral nucleic acid, and the second-stage enhancement of AIE-based fluorescent signal was due to the formation of a nucleic acid duplex to restrict the intramolecular rotation of the AIEgen. Furthermore, the feasibility of our platform for diagnostic application was demonstrated by detecting SARS-CoV-2 virus plasmids containing both Orf1ab and N genes with rapid detection around 1 h and good sensitivity at pM level without amplification. Our platform shows great promise in assisting the initial rapid detection of the SARS-CoV-2 nucleic acid sequence before utilizing quantitative reverse transcription-polymerase chain reaction for second confirmation.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationAggregate, Feb. 2023, v. 4, no. 1, e195en_US
dcterms.isPartOfAggregateen_US
dcterms.issued2023-02-
dc.identifier.scopus2-s2.0-85153743735-
dc.identifier.ros2022002031-
dc.identifier.eissn2692-4560en_US
dc.identifier.artne195en_US
dc.description.validate202309 bckwen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberCDCF_2022-2023-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextShenzhen-Hong Kong-Macao Science and Technology Plan Project; Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Aggregate - 2022 - Zhang.pdf6.05 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

121
Last Week
0
Last month
Citations as of Nov 9, 2025

Downloads

726
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

44
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

59
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.