Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/101409
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Biomedical Engineering-
dc.contributorResearch Institute for Smart Ageing-
dc.contributorSchool of Nursing-
dc.creatorLai, DKHen_US
dc.creatorZha, LWen_US
dc.creatorLeung, TYNen_US
dc.creatorTam, AYCen_US
dc.creatorSo, BPHen_US
dc.creatorLim, HJen_US
dc.creatorCheung, DSKen_US
dc.creatorWong, DWCen_US
dc.creatorCheung, JCWen_US
dc.date.accessioned2023-09-18T02:25:31Z-
dc.date.available2023-09-18T02:25:31Z-
dc.identifier.urihttp://hdl.handle.net/10397/101409-
dc.language.isoenen_US
dc.publisherKe Ai Publishing Communications Ltd.en_US
dc.rights© 2022 The Authors. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)en_US
dc.rightsThe following publication Lai, D. K. H., Zha, L. W., Leung, T. Y. N., Tam, A. Y. C., So, B. P. H., Lim, H. J., ... & Cheung, J. C. W. (2023). Dual ultra-wideband (UWB) radar-based sleep posture recognition system: Towards ubiquitous sleep monitoring. Engineered Regeneration, 4(1), 36-43 is available at https://doi.org/10.1016/j.engreg.2022.11.003.en_US
dc.subjectAblation studyen_US
dc.subjectDeep learningen_US
dc.subjectFeature extractionen_US
dc.subjectObstructive sleep apneaen_US
dc.subjectSleep monitoringen_US
dc.titleDual ultra-wideband (UWB) radar-based sleep posture recognition system : towards ubiquitous sleep monitoringen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage36en_US
dc.identifier.epage43en_US
dc.identifier.volume4en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1016/j.engreg.2022.11.003en_US
dcterms.abstractSleep posture monitoring is an essential assessment for obstructive sleep apnea (OSA) patients. The objective of this study is to develop a machine learning-based sleep posture recognition system using a dual ultra-wideband radar system. We collected radiofrequency data from two radars positioned over and at the side of the bed for 16 patients performing four sleep postures (supine, left and right lateral, and prone). We proposed and evaluated deep learning approaches that streamlined feature extraction and classification, and the traditional machine learning approaches that involved different combinations of feature extractors and classifiers. Our results showed that the dual radar system performed better than either single radar. Predetermined statistical features with random forest classifier yielded the best accuracy (0.887), which could be further improved via an ablation study (0.938). Deep learning approach using transformer yielded accuracy of 0.713.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationEngineered regeneration, Mar. 2023, v. 4, no. 1, p. 36-43en_US
dcterms.isPartOfEngineered regenerationen_US
dcterms.issued2023-03-
dc.identifier.scopus2-s2.0-85145685217-
dc.identifier.ros2022000530-
dc.identifier.eissn2666-1381en_US
dc.description.validate202309 bckw-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberCDCF_2022-2023-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
1-s2.0-S2666138122000706-main.pdf2.18 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

127
Last Week
1
Last month
Citations as of Nov 9, 2025

Downloads

150
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

35
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.