Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/101301
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineeringen_US
dc.creatorLuo, WLen_US
dc.creatorXia, Yen_US
dc.creatorZhou, XQen_US
dc.date.accessioned2023-08-30T04:16:37Z-
dc.date.available2023-08-30T04:16:37Z-
dc.identifier.issn0022-460Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/101301-
dc.language.isoenen_US
dc.publisherAcademic Pressen_US
dc.rights© 2016 Published by Elsevier Ltd.en_US
dc.rights© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Luo, W. L., Xia, Y., & Zhou, X. Q. (2016). A closed-form solution to a viscoelastically supported Timoshenko beam under harmonic line load. Journal of Sound and Vibration, 369, 109-118 is available at https://doi.org/10.1016/j.jsv.2016.01.011.en_US
dc.subjectAnalytical methoden_US
dc.subjectBeam-foundation systemen_US
dc.subjectMoving loaden_US
dc.subjectVibrationen_US
dc.titleA closed-form solution to a viscoelastically supported Timoshenko beam under harmonic line loaden_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage109en_US
dc.identifier.epage118en_US
dc.identifier.volume369en_US
dc.identifier.doi10.1016/j.jsv.2016.01.011en_US
dcterms.abstractThis study aims to formulate a closed-form solution to a viscoelastically supported Timoshenko beam under a harmonic line load. The differential governing equations of motion are converted into algebraic equations by assuming the deflection and rotation of the beam in harmonic forms with respect to time and space. The characteristic equation is biquadratic and thus contains 14 explicit roots. These roots are then substituted into Cauchy's residue theorem; consequently, five forms of the closed-form solution are generated. The present solution is consistent with that of an Euler-Bernoulli beam on a Winkler foundation, which is a special case of the present problem. The current solution is also verified through numerical examples.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of sound and vibration, 12 May 2016, v. 369, p. 109-118en_US
dcterms.isPartOfJournal of sound and vibrationen_US
dcterms.issued2016-05-12-
dc.identifier.scopus2-s2.0-84961286948-
dc.identifier.eissn1095-8568en_US
dc.description.validate202308 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberCEE-2509-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNSFC Joint Research Fund for Overseas and Hong Kong and Macao Scholarsen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6627838-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Xia_Closed-form_Solution_Viscoelastically.pdfPre-Published version1.01 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

125
Last Week
3
Last month
Citations as of Nov 9, 2025

Downloads

88
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

9
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

10
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.