Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/101237
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineeringen_US
dc.creatorLi, Yen_US
dc.creatorHo, Wen_US
dc.creatorLv, Ken_US
dc.creatorZhu, Ben_US
dc.creatorLee, SCen_US
dc.date.accessioned2023-08-30T04:16:08Z-
dc.date.available2023-08-30T04:16:08Z-
dc.identifier.issn0169-4332en_US
dc.identifier.urihttp://hdl.handle.net/10397/101237-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2017 Elsevier B.V. All rights reserved.en_US
dc.rights© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Li, Y., Ho, W., Lv, K., Zhu, B., & Lee, S. C. (2018). Carbon vacancy-induced enhancement of the visible light-driven photocatalytic oxidation of NO over g-C3N4 nanosheets. Applied Surface Science, 430, 380-389 is available at https://doi.org/10.1016/j.apsusc.2017.06.054.en_US
dc.subjectCarbon vacancyen_US
dc.subjectCO2en_US
dc.subjectg-C3N4en_US
dc.subjectNO oxidationen_US
dc.subjectThermal etchingen_US
dc.titleCarbon vacancy-induced enhancement of the visible light-driven photocatalytic oxidation of NO over g-C₃N₄ nanosheetsen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationTitle on author’s file: "Carbon vacancy associates enhance the visible-light-induced photocatalytic performance of C3N4 nanosheets toward NO and NO2 oxidation"en_US
dc.identifier.spage380en_US
dc.identifier.epage389en_US
dc.identifier.volume430en_US
dc.identifier.doi10.1016/j.apsusc.2017.06.054en_US
dcterms.abstractg-C₃N₄ (gCN) with carbon vacancy has been extensively investigated and applied in (photo)catalysis. Engineering the carbon vacancy in gCN is of great importance, but it remains a challenging task. In this work, we report for the first time the fabrication of gCN with carbon vacancy (Cv-gCN) via thermal treatment of pristine gCN in CO₂ atmosphere. The photocatalytic performance of Cv-gCN is evaluated on the basis of NO oxidization under visible light irradiation (λ > 400 nm) in a continual reactor. The successful formation of carbon vacancy in gCN is confirmed through electron paramagnetic resonance (EPR) and X-ray photoelectron spectroscopy (XPS). The photocatalytic oxidation removal rate of NO over Cv-gCN is 59.0%, which is two times higher than that over pristine gCN (24.2%). The results of the quenching experiment show that superoxide radicals (O₂•⁻) act as the main reactive oxygen species, which is responsible for the oxidation of NO. The enlarged BET surface areas and negatively shifted conduction band (CB) potential enhance the photocatalytic activity of Cv-gCN, which facilitates the efficient electron transfer from the CB of Cv-gCN to the surface adsorbed oxygen, resulting in the formation of O₂•⁻ that can oxidize NO.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationApplied surface science, 1 Feb. 2018, v. 430, p. 380-389en_US
dcterms.isPartOfApplied surface scienceen_US
dcterms.issued2018-02-01-
dc.identifier.scopus2-s2.0-85020904576-
dc.identifier.eissn1873-5584en_US
dc.description.validate202308 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberCEE-1921-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextScience and Technology Program of Wuhan; Science and Technology Program of Wuhan; National Natural Science Foundation of China; Education University of Hong Kong; National Basic Research Program of China (973 Program)en_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6754045-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Lee_Carbon_Vacancy-Induced_Enhancement.pdfPre-Published version2.9 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

116
Last Week
0
Last month
Citations as of Nov 9, 2025

Downloads

268
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

239
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

221
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.