Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/101173
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineeringen_US
dc.creatorYan, JWen_US
dc.creatorLai, SKen_US
dc.creatorHe, LHen_US
dc.date.accessioned2023-08-30T04:15:36Z-
dc.date.available2023-08-30T04:15:36Z-
dc.identifier.issn1359-8368en_US
dc.identifier.urihttp://hdl.handle.net/10397/101173-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.rights© 2019 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Yan, J. W., Lai, S. K., & He, L. H. (2019). Nonlinear dynamic behavior of single-layer graphene under uniformly distributed loads. Composites Part B: Engineering, 165, 473-490 is available at https://doi.org/10.1016/j.compositesb.2019.01.072.en_US
dc.subjectAtomistic-continuum multiscale approachen_US
dc.subjectGrapheneen_US
dc.subjectNatural frequencyen_US
dc.subjectNonlinear dynamic behavioren_US
dc.subjectSurface morphology evolutionen_US
dc.titleNonlinear dynamic behavior of single-layer graphene under uniformly distributed loadsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage473en_US
dc.identifier.epage490en_US
dc.identifier.volume165en_US
dc.identifier.doi10.1016/j.compositesb.2019.01.072en_US
dcterms.abstractAn atomistic-continuum multiscale approach is used to simulate the nonlinear dynamic behavior of simply-supported single layer graphene sheets subject to a uniformly distributed out-of-plane load. The dynamic equation of motion is derived and solved by the Newmark-β method. The evolution of surface morphology and the nonlinear effects in terms of geometrical and material nonlinearities can be captured by iteratively updating the system stiffness. It is found that the natural frequencies of simply-supported graphene sheets almost remain constant when the external load is in a small range. The present solutions are in good agreement with those results obtained from the linear vibration analysis by a semi-analytical method. As the applied load increases continuously, this gives rise to an elongation of graphene to increase the natural frequency. Based on the numerical approach, the surface morphology evolution of graphene can be visualized and explored.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationComposites Part B: Engineering, 15 May 2019, v. 165, p. 473-490en_US
dcterms.isPartOfComposites. Part B, Engineeringen_US
dcterms.issued2019-05-15-
dc.identifier.scopus2-s2.0-85061142151-
dc.identifier.eissn1879-1069en_US
dc.description.validate202308 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberCEE-1371-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; Natural Science Foundation of Guangdong Provinceen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS20257787-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Lai_Nonlinear_Dynamic_Behavior.pdfPre-Published version3.95 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

107
Last Week
6
Last month
Citations as of Nov 9, 2025

Downloads

81
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

20
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

19
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.