Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/101155
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineeringen_US
dc.creatorTian, Wen_US
dc.creatorWeng, Sen_US
dc.creatorXia, Yen_US
dc.creatorZhu, Hen_US
dc.creatorGao, Fen_US
dc.creatorSun, Yen_US
dc.creatorLi,Jen_US
dc.date.accessioned2023-08-30T04:15:23Z-
dc.date.available2023-08-30T04:15:23Z-
dc.identifier.issn0888-3270en_US
dc.identifier.urihttp://hdl.handle.net/10397/101155-
dc.language.isoenen_US
dc.publisherAcademic Pressen_US
dc.rights© 2019 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Tian, W., Weng, S., Xia, Y., Zhu, H., Gao, F., Sun, Y., & Li, J. (2019). An iterative reduced-order substructuring approach to the calculation of eigensolutions and eigensensitivities. Mechanical Systems and Signal Processing, 130, 361-377 is available at https://doi.org/10.1016/j.ymssp.2019.05.006.en_US
dc.subjectEigensensitivityen_US
dc.subjectEigensolutionen_US
dc.subjectModel reductionen_US
dc.subjectSubstructuring methoden_US
dc.titleAn iterative reduced-order substructuring approach to the calculation of eigensolutions and eigensensitivitiesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage361en_US
dc.identifier.epage377en_US
dc.identifier.volume130en_US
dc.identifier.doi10.1016/j.ymssp.2019.05.006en_US
dcterms.abstractSubstructuring methods are efficient to estimate some lowest eigensolutions and eigensensitivities of large-scale structural systems by representing the global eigenequation with small-sized substructural eigenmodes. Inclusion of more substructural eigenmodes improves the accuracy of eigensolutions and eigensensitivities, whereas decreases the computational efficiency adversely. This paper proposes a new iterative reduced-order substructuring method to calculate the eigensolutions and eigensensitivities of the global structure. A modal transformation matrix, relating the higher modes to the lower modes, is derived to transform the original frequency-dependent matrices of each substructure into frequency-independent ones. A simplified reduced-order eigenequation is then obtained through a few iterations performed on the modal transformation matrix and mass matrix. The eigensolutions and eigensensitivities of the global structure are calculated accurately with a small number of substructural eigenmodes retained, avoiding the inclusion of numerous substructural eigenmodes. Applications of the proposed method to a numerical frame and a practical large-scale structure demonstrate that the eigensolutions and eigensensitivities of the global structure can be calculated accurately with only a small number of substructural eigenmodes and a few iterations.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMechanical systems and signal processing, 1 Sept 2019, v. 130, p. 361-377en_US
dcterms.isPartOfMechanical systems and signal processingen_US
dcterms.issued2019-09-01-
dc.identifier.scopus2-s2.0-85065713906-
dc.identifier.eissn1096-1216en_US
dc.description.validate202308 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberCEE-1264-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; Henan University of Science and Technology; Fundamental Research Funds for the Central Universities; Major State Basic Research Development Program of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS13553260-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Xia_Iterative_Reduced-order_Substructuring.pdfPre-Published version976.46 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

104
Last Week
3
Last month
Citations as of Nov 9, 2025

Downloads

83
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

27
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

24
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.