Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/101141
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineeringen_US
dc.creatorJin, Zen_US
dc.creatorYin, ZYen_US
dc.creatorKotronis, Pen_US
dc.creatorLi, Zen_US
dc.date.accessioned2023-08-30T04:15:17Z-
dc.date.available2023-08-30T04:15:17Z-
dc.identifier.issn0029-8018en_US
dc.identifier.urihttp://hdl.handle.net/10397/101141-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.rights© 2019 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Jin, Z., Yin, Z. Y., Kotronis, P., & Li, Z. (2019). Advanced numerical modelling of caisson foundations in sand to investigate the failure envelope in the HMV space. Ocean Engineering, 190, 106394 is available at https://doi.org/10.1016/j.oceaneng.2019.106394.en_US
dc.subjectConstitutive modelen_US
dc.subjectCritical stateen_US
dc.subjectFailure envelopeen_US
dc.subjectSanden_US
dc.subjectSmoothed particle hydrodynamics methoden_US
dc.subjectSuction bucket foundationen_US
dc.titleAdvanced numerical modelling of caisson foundations in sand to investigate the failure envelope in the H-M-V spaceen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume190en_US
dc.identifier.doi10.1016/j.oceaneng.2019.106394en_US
dcterms.abstractThis paper focuses on the identification of the failure envelope of a caisson foundation in sand using an advanced critical state-based sand model (SIMSAND) and the Combined Lagrangian Smoothed Particle Hydrodynamics Method (CLSPH). The parameters of the SIMSAND constitutive model are first calibrated using triaxial tests on Baskarp sand. In order to validate the combined CLSPH-SIMSAND approach, a cone penetration test, model tests and a field test on a reduced scale caisson foundation are simulated. After full numerical validations with different scales from laboratory to in-situ conditions, a numerical parametrical study is then introduced considering different sand properties (density, friction angle, deformability, crushability) and caisson dimensions (soil-structure contact surface area, diameter-depth ratio) and complex combined loading paths to identify the failure envelope in the horizontal force (H), bending moment (M), vertical force (V) space. The influence of the caisson foundation contact surface area, aspect ratio and soil parameters are considered and quantified. Finally, an analytical formula is proposed for the 3D failure envelope in the H-M-V space.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationOcean engineering, 15 Oct. 2019, v. 190, 106394en_US
dcterms.isPartOfOcean engineeringen_US
dcterms.issued2019-10-15-
dc.identifier.scopus2-s2.0-85072297927-
dc.identifier.artn106394en_US
dc.description.validate202308 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberCEE-1215-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS14691125-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Yin_Advanced_Numerical_Modelling.pdfPre-Published version5.38 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

123
Last Week
2
Last month
Citations as of Nov 9, 2025

Downloads

124
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

47
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

41
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.