Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/101016
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.creatorAkbar, MAen_US
dc.creatorWong, WOen_US
dc.creatorRustighi, Een_US
dc.date.accessioned2023-08-28T06:07:10Z-
dc.date.available2023-08-28T06:07:10Z-
dc.identifier.issn0022-460Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/101016-
dc.language.isoenen_US
dc.publisherAcademic Pressen_US
dc.subjectSingle-mass impact damperen_US
dc.subjectParticle impact damperen_US
dc.subjectPassive vibration controlen_US
dc.subjectOptimal designen_US
dc.subjectTuned Mass Damperen_US
dc.titleDesign optimization of a single-mass impact damperen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume570en_US
dc.identifier.doi10.1016/j.jsv.2023.118019en_US
dcterms.abstractThis research article presents a numerical approach to establish an optimal design methodology for a single-mass impact damper (SMID), which is a passive energy dissipation device with robust performance. Due to the nonlinear characteristics of SMID and a lack of analytical models, designing a single-mass impact damper with optimal combination of the parameters has been challenging. Furthermore, an uncontrolled mass of the SMID on a vibrating structure may lead to chaotic vibration responses. This study identifies a range of design parameters of the SMID to ensure non-chaotic responses and validates the optimal design combinations using an experimental prototype. The results show that a single-mass impact damper designed with the optimal combination of design parameters can provide better vibration damping and relatively steady response. This study also compares the performance of an optimized single-mass impact damper with an optimized tuned mass damper and finds that the single-mass impact damper can work more effectively than the tuned mass damper in damping free vibrations of a single-degree-of-freedom primary structure. Although the SMID cannot suppress forced vibration amplitude as effectively as a tuned mass damper (TMD) at resonance, it has the advantages of lower cost and easier installation than the TMD. Overall, this study provides a basis for the optimal design of a single-mass impact damper and resolves the issues related to design methodology and chaotic vibration response with a single-mass impact damper.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationJournal of sound and vibration, 3 Feb. 2024, v. 570, 118019en_US
dcterms.isPartOfJournal of sound and vibrationen_US
dcterms.issued2024-02-03-
dc.identifier.eissn1095-8568en_US
dc.identifier.artn118019en_US
dc.description.validate202308 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera2382-
dc.identifier.SubFormID47596-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Hong Kong Polytechnic University (Project No: 20031135R)||en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-02-03en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-02-03
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

137
Citations as of Apr 13, 2025

SCOPUSTM   
Citations

1
Citations as of Jun 21, 2024

WEB OF SCIENCETM
Citations

5
Citations as of Apr 24, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.