Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/101016
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.creatorAkbar, MAen_US
dc.creatorWong, WOen_US
dc.creatorRustighi, Een_US
dc.date.accessioned2023-08-28T06:07:10Z-
dc.date.available2023-08-28T06:07:10Z-
dc.identifier.issn0022-460Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/101016-
dc.language.isoenen_US
dc.publisherAcademic Pressen_US
dc.subjectSingle-mass impact damperen_US
dc.subjectParticle impact damperen_US
dc.subjectPassive vibration controlen_US
dc.subjectOptimal designen_US
dc.subjectTuned Mass Damperen_US
dc.titleDesign optimization of a single-mass impact damperen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume570en_US
dc.identifier.doi10.1016/j.jsv.2023.118019en_US
dcterms.abstractThis research article presents a numerical approach to establish an optimal design methodology for a single-mass impact damper (SMID), which is a passive energy dissipation device with robust performance. Due to the nonlinear characteristics of SMID and a lack of analytical models, designing a single-mass impact damper with optimal combination of the parameters has been challenging. Furthermore, an uncontrolled mass of the SMID on a vibrating structure may lead to chaotic vibration responses. This study identifies a range of design parameters of the SMID to ensure non-chaotic responses and validates the optimal design combinations using an experimental prototype. The results show that a single-mass impact damper designed with the optimal combination of design parameters can provide better vibration damping and relatively steady response. This study also compares the performance of an optimized single-mass impact damper with an optimized tuned mass damper and finds that the single-mass impact damper can work more effectively than the tuned mass damper in damping free vibrations of a single-degree-of-freedom primary structure. Although the SMID cannot suppress forced vibration amplitude as effectively as a tuned mass damper (TMD) at resonance, it has the advantages of lower cost and easier installation than the TMD. Overall, this study provides a basis for the optimal design of a single-mass impact damper and resolves the issues related to design methodology and chaotic vibration response with a single-mass impact damper.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationJournal of sound and vibration, 3 Feb. 2024, v. 570, 118019en_US
dcterms.isPartOfJournal of sound and vibrationen_US
dcterms.issued2024-02-03-
dc.identifier.eissn1095-8568en_US
dc.identifier.artn118019en_US
dc.description.validate202308 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera2382-
dc.identifier.SubFormID47596-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Hong Kong Polytechnic University (Project No: 20031135R)||en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-02-03en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-02-03
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

171
Last Week
7
Last month
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

1
Citations as of Jun 21, 2024

WEB OF SCIENCETM
Citations

13
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.