Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/100781
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Land Surveying and Geo-Informatics-
dc.creatorDing, Qen_US
dc.creatorJi, Sen_US
dc.creatorChen, Wen_US
dc.date.accessioned2023-08-11T03:13:25Z-
dc.date.available2023-08-11T03:13:25Z-
dc.identifier.isbn9.78151E+12en_US
dc.identifier.issn0277-786Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/100781-
dc.description2nd ISPRS International Conference on Computer Vision in Remote Sensing (CVRS 2015), 28-30 April 2015, Xiamen, China.en_US
dc.language.isoenen_US
dc.publisherSPIE-International Society for Optical Engineeringen_US
dc.rightsCopyright 2016 Society of Photo‑Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this publication for a fee or for commercial purposes, and modification of the contents of the publication are prohibited.en_US
dc.rightsThe following publication Qiong Ding, Shengyue Ji, and Wu Chen "Application of LiDAR’s multiple attributes for wetland classification", Proc. SPIE 9901, 2nd ISPRS International Conference on Computer Vision in Remote Sensing (CVRS 2015), 990110 (2 March 2016) is available at https://doi.org/10.1117/12.2234678.en_US
dc.subjectAccuracyen_US
dc.subjectClassificationen_US
dc.subjectLiDARen_US
dc.subjectMultiple attributesen_US
dc.subjectWetlandsen_US
dc.titleApplication of LiDAR's multiple attributes for wetland classificationen_US
dc.typeConference Paperen_US
dc.identifier.volume9901en_US
dc.identifier.doi10.1117/12.2234678en_US
dcterms.abstractWetlands have received intensive interdisciplinary attention as a unique ecosystem and valuable resources. As a new technology, the airborne LiDAR system has been applied in wetland research these years. However, most of the studies used only one or two LiDAR observations to extract either terrain or vegetation in wetlands. This research aims at integrating LiDAR's multiple attributes (DSM, DTM, off-ground features, Slop map, multiple pulse returns, and normalized intensity) to improve mapping and classification of wetlands based on a multi-level object-oriented classification method. By using this method, we are able to classify the Yellow River Delta wetland into eight classes with overall classification accuracy of 92.5%-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationProceedings of SPIE : the International Society for Optical Engineering, 2016, v. 9901, 990110en_US
dcterms.isPartOfProceedings of SPIE : the International Society for Optical Engineeringen_US
dcterms.issued2016-
dc.identifier.scopus2-s2.0-84983372439-
dc.relation.conferenceISPRS International Conference on Computer Vision in Remote Sensing [CVRS]-
dc.identifier.eissn1996-756Xen_US
dc.identifier.artn990110en_US
dc.description.validate202305 bckw-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberLSGI-0466-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextChina Postdoctoral Science Foundation; Natural Science Foundation of Guangdong Provinceen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS9578670-
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
Chen_Application_Lidars_Multiple.pdf863.22 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

171
Citations as of Nov 10, 2025

Downloads

74
Citations as of Nov 10, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.