Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/100755
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Land Surveying and Geo-Informatics-
dc.creatorYu, Wen_US
dc.creatorDing, Xen_US
dc.creatorDai, Wen_US
dc.creatorChen, Wen_US
dc.date.accessioned2023-08-11T03:13:14Z-
dc.date.available2023-08-11T03:13:14Z-
dc.identifier.issn0949-7714en_US
dc.identifier.urihttp://hdl.handle.net/10397/100755-
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights© Springer-Verlag Berlin Heidelberg 2017en_US
dc.rightsThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use(https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s00190-017-1038-6.en_US
dc.subjectMulti-GNSS positioningen_US
dc.subjectSemiparametric estimationen_US
dc.subjectSystematic errorsen_US
dc.subjectVariance component estimationen_US
dc.titleSystematic error mitigation in multi-GNSS positioning based on semiparametric estimationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1491en_US
dc.identifier.epage1502en_US
dc.identifier.volume91en_US
dc.identifier.issue12en_US
dc.identifier.doi10.1007/s00190-017-1038-6en_US
dcterms.abstractJoint use of observations from multiple global navigation satellite systems (GNSS) is advantageous in high-accuracy positioning. However, systematic errors in the observations can significantly impact on the positioning accuracy if such errors cannot be properly mitigated. The errors can distort least squares estimations and also affect the results of variance component estimation that is frequently used to determine the stochastic model when observations from multiple GNSS are used. We present an approach that is based on the concept of semiparametric estimation for mitigating the effects of the systematic errors. Experimental results based on both simulated and real GNSS datasets show that the approach is effective, especially when applied before carrying out variance component estimation.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of geodesy, Dec. 2017, v. 91, no. 12, p. 1491-1502en_US
dcterms.isPartOfJournal of geodesyen_US
dcterms.issued2017-12-
dc.identifier.scopus2-s2.0-85019541374-
dc.identifier.eissn1432-1394en_US
dc.description.validate202305 bckw-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberLSGI-0342-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; National Administration of Surveying, Mapping and Geoinformation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6746876-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Yu_Systematic_Error_Mitigation.pdfPre-Published version3.68 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

73
Citations as of Apr 14, 2025

Downloads

75
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

16
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

12
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.