Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/100729
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Land Surveying and Geo-Informatics-
dc.creatorCai, Len_US
dc.creatorShi, Wen_US
dc.creatorHao, Men_US
dc.creatorZhang, Hen_US
dc.creatorGao, Len_US
dc.date.accessioned2023-08-11T03:13:03Z-
dc.date.available2023-08-11T03:13:03Z-
dc.identifier.issn0255-660Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/100729-
dc.language.isoenen_US
dc.publisherSpringer (India) Private Ltd.en_US
dc.rights© Indian Society of Remote Sensing 2018en_US
dc.rightsThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use(https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s12524-018-0864-1en_US
dc.subjectFeature weighten_US
dc.subjectFuzzy c-meansen_US
dc.subjectMulti-feature fusionen_US
dc.subjectObject-oriented change detectionen_US
dc.titleA multi-feature fusion-based change detection method for remote sensing imagesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage2015en_US
dc.identifier.epage2022en_US
dc.identifier.volume46en_US
dc.identifier.issue12en_US
dc.identifier.doi10.1007/s12524-018-0864-1en_US
dcterms.abstractAn object-oriented change detection method for remote sensing images based on multiple features using a novel weighted fuzzy c-means (WFCM) method is presented. First, Gabor and Markov random field textures are extracted and added to the original images. Second, objects are obtained by using a watershed segmentation algorithm to segment the images. Third, simple threshold technology is applied to produce the initial change detection results. Finally, refining is conducted using WFCM with different feature weights identified by the Relief algorithm. Two satellite images are used to validate the proposed method. Experimental results show that the proposed method can reduce uncertainties involved in using a single feature or using equally weighted features, resulting in higher accuracy.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of the Indian Society of Remote Sensing, Dec. 2018, v. 46, no. 12, p. 2015-2022en_US
dcterms.isPartOfJournal of the Indian Society of Remote Sensingen_US
dcterms.issued2018-12-
dc.identifier.scopus2-s2.0-85055708807-
dc.identifier.eissn0974-3006en_US
dc.description.validate202305 bckw-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberLSGI-0246-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; Shandong Province Higher Educational Science and Technology Program; Ministry of Land and Resourceen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS15447821-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Shi_Multi-Feature_Fusion-Based_Change.pdfPre-Published version2.05 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

69
Citations as of Apr 14, 2025

Downloads

38
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

10
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

8
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.