Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/100720
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Land Surveying and Geo-Informatics-
dc.creatorZhao, Pen_US
dc.creatorLiu, Xen_US
dc.creatorShen, Jen_US
dc.creatorChen, Men_US
dc.date.accessioned2023-08-11T03:12:55Z-
dc.date.available2023-08-11T03:12:55Z-
dc.identifier.issn1010-6049en_US
dc.identifier.urihttp://hdl.handle.net/10397/100720-
dc.language.isoenen_US
dc.publisherTaylor & Francisen_US
dc.rights© 2017 Informa UK Limited, trading as Taylor & Francis Groupen_US
dc.rightsThis is an Accepted Manuscript of an article published by Taylor & Francis in Geocarto International on 29 Nov 2017 (published online), available at: http://www.tandfonline.com/10.1080/10106049.2017.1404140.en_US
dc.subjectGraph-partitioning-based clusteringen_US
dc.subjectHotspot detectionen_US
dc.subjectNetwork spaceen_US
dc.subjectSpatiotemporal variationsen_US
dc.subjectTaxi trajectoryen_US
dc.titleA network distance and graph-partitioning-based clustering method for improving the accuracy of urban hotspot detectionen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationTitle on author’s file: A Network Constrained and Graph Partitioning Based Clustering Method for Improving the Accuracy of Urban Hotspot Detectionen_US
dc.identifier.spage293en_US
dc.identifier.epage315en_US
dc.identifier.volume34en_US
dc.identifier.issue3en_US
dc.identifier.doi10.1080/10106049.2017.1404140en_US
dcterms.abstractClustering is an important approach to identifying hotspots with broad applications, ranging from crime area analysis to transport prediction and urban planning. As an on-demand transport service, taxis play an important role in urban systems, and the pick-up and drop-off locations in taxi GPS trajectory data have been widely used to detect urban hotspots for various purposes. In this work, taxi drop-off events are represented as linear features in the context of the road network space. Based on such representation, instead of the most frequently used Euclidian distance, Jaccard distance is calculated to measure the similarity of road segments for cluster analysis, and further, a network distance and graph-partitioning-based clustering method is proposed for improving the accuracy of urban hotspot detection. A case study is conducted using taxi trajectory data collected from over 6500 taxis during one week, and the results indicate that the proposed method can identify urban hotspots more precisely.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationGeocarto international, 2019, v. 34, no. 3, p. 293-315en_US
dcterms.isPartOfGeocarto internationalen_US
dcterms.issued2019-
dc.identifier.scopus2-s2.0-85035338196-
dc.identifier.eissn1752-0762en_US
dc.description.validate202305 bckw-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberLSGI-0224-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; A university startup project; A area of Excellence projecten_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS19750090-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Zhao_Network_Distance_Clustering.pdfPre-Published version3.51 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

77
Citations as of Apr 14, 2025

Downloads

80
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

25
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

20
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.