Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/100701
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Land Surveying and Geo-Informatics-
dc.creatorYang, Cen_US
dc.creatorShi, Wen_US
dc.creatorChen, Wen_US
dc.date.accessioned2023-08-11T03:12:47Z-
dc.date.available2023-08-11T03:12:47Z-
dc.identifier.issn0949-7714en_US
dc.identifier.urihttp://hdl.handle.net/10397/100701-
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights© Springer-Verlag GmbH Germany, part of Springer Nature 2019en_US
dc.rightsThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use(https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s00190-018-01227-5en_US
dc.subjectIntegrated navigationen_US
dc.subjectM-estimationen_US
dc.subjectNonlinear filteren_US
dc.subjectRobust estimationen_US
dc.subjectUnscented Kalman filteren_US
dc.titleRobust M–M unscented Kalman filtering for GPS/IMU navigationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1093en_US
dc.identifier.epage1104en_US
dc.identifier.volume93en_US
dc.identifier.issue8en_US
dc.identifier.doi10.1007/s00190-018-01227-5en_US
dcterms.abstractIn this paper, a robust unscented Kalman filter (UKF) based on the generalized maximum likelihood estimation (M-estimation) is proposed to improve the robustness of the integrated navigation system of Global Navigation Satellite System and Inertial Measurement Unit. The UKF is a variation of Kalman filter by which the Jacobian matrix calculation in a nonlinear system state model is not necessary. The proposed robust M–M unscented Kalman filter (RMUKF) applies the M-estimation principle to both functional model errors and measurement errors. Hence, this robust filter attenuates the influences of disturbances in the dynamic model and of measurement outliers without linearizing the nonlinear state space model. In addition, an equivalent weight matrix, composed of the bi-factor shrink elements, is proposed in order to keep the original correlation coefficients of the predicted state unchanged. Furthermore, a nonlinear error model is used as the dynamic equation to verify the performance of the proposed RMUKF with a simulation and field test. Compared with the conventional UKF, the impacts of measurement outliers and system disturbances on the state estimation are both controlled by RMUKF.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of geodesy, Aug. 2019, v. 93, no. 8, p. 1093-1104en_US
dcterms.isPartOfJournal of geodesyen_US
dcterms.issued2019-08-
dc.identifier.scopus2-s2.0-85060511805-
dc.identifier.eissn1432-1394en_US
dc.description.validate202305 bckw-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberLSGI-0182-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Science Foundation of China; Fundamental Research Funds for the Central Universitiesen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS15447073-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Shi_Robust_M–M_Unscented.pdfPre-Published version5.63 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

72
Citations as of Apr 14, 2025

Downloads

71
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

60
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

37
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.