Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/100684
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Land Surveying and Geo-Informatics-
dc.creatorSenousi, AMen_US
dc.creatorLiu, Xen_US
dc.creatorZhang, Jen_US
dc.creatorHuang, Jen_US
dc.creatorShi, Wen_US
dc.date.accessioned2023-08-11T03:12:38Z-
dc.date.available2023-08-11T03:12:38Z-
dc.identifier.issn1010-6049en_US
dc.identifier.urihttp://hdl.handle.net/10397/100684-
dc.language.isoenen_US
dc.publisherTaylor & Francisen_US
dc.rights© 2020 Informa UK Limited, trading as Taylor & Francis Groupen_US
dc.rightsThis is an Accepted Manuscript of an article published by Taylor & Francis in Geocarto International on 20 May 2020 (published online), available at: http://www.tandfonline.com/10.1080/10106049.2020.1768594.en_US
dc.subjectCorrelation analysisen_US
dc.subjectNetwork centralityen_US
dc.subjectPassenger flowen_US
dc.subjectPublic transport systemsen_US
dc.subjectSmart card dataen_US
dc.titleAn empirical analysis of public transit networks using smart card data in Beijing, Chinaen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1203en_US
dc.identifier.epage1223en_US
dc.identifier.volume37en_US
dc.identifier.issue4en_US
dc.identifier.doi10.1080/10106049.2020.1768594en_US
dcterms.abstractMost existing studies on public transit network (PTN) rely on either small-scale passenger flow data or small PTN, and only traditional network parameters are used to calculate the correlation coefficient. In this work, the real smart card data (SCD) (when passenger tap in and tap out a station) of over eight million users is used as a proxy of passenger flow to dynamically explore and evaluate the structure of large-scale PTNs with tens of thousands of stations in Beijing, China. Three types of large-scale PTNs are generated, and the overall network structure of PTNs are examined and found to follow heavy-tailed distributions (mostly power law). Further, three traditional centrality measures (i.e. degree, betweenness and closeness) are adopted and modified to dynamically explore the relationship between PTNs and passenger flow. Our findings show that, the modified centrality measures outperform the traditional centrality measures in estimating passenger flow.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationGeocarto international, 2022, v. 37, no. 4, p. 1203-1223en_US
dcterms.isPartOfGeocarto internationalen_US
dcterms.issued2022-
dc.identifier.scopus2-s2.0-85085359732-
dc.identifier.eissn1752-0762en_US
dc.description.validate202305 bckw-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberLSGI-0138-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextStart-up project of Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS28989531-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Liu_Empirical_Analysis_Public.pdfPre-Published version2.86 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

87
Citations as of Apr 14, 2025

Downloads

80
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

6
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

5
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.