Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/100652
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Land Surveying and Geo-Informaticsen_US
dc.contributorResearch Institute for Sustainable Urban Developmenten_US
dc.creatorGong, Yen_US
dc.creatorLiu, Zen_US
dc.creatorChan, PWen_US
dc.creatorHon, KKen_US
dc.date.accessioned2023-08-11T03:12:22Z-
dc.date.available2023-08-11T03:12:22Z-
dc.identifier.issn1876-1100en_US
dc.identifier.urihttp://hdl.handle.net/10397/100652-
dc.descriptionChina Satellite Navigation Conference (CSNC 2021) Proceedings, 22nd-25th May, 2021 in Nanchang, China.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021en_US
dc.rightsThis version of the proceeding paper has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use(https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/978-981-16-3138-2_60en_US
dc.subjectData assimilationen_US
dc.subjectGlobal Navigation Satellite System (GNSS)en_US
dc.subjectPrecipitable Water Vapor (PWV)en_US
dc.subjectPrecise Point Positioning (PPP)en_US
dc.subjectWeather Research and Forecasting (WRF) modelen_US
dc.titleAugmenting GNSS PPP accuracy in South China using water vapor correction data from WRF assimilation resultsen_US
dc.typeConference Paperen_US
dc.identifier.spage653en_US
dc.identifier.epage670en_US
dc.identifier.volume772en_US
dc.identifier.doi10.1007/978-981-16-3138-2_60en_US
dcterms.abstractWet delay in Global Navigation Satellite System (GNSS), mainly caused by water vapor in the atmosphere, is difficult to be accurately modeled using empirical wet delay models as water vapor is highly variable in both space and time. In this paper we propose correcting the GNSS wet delay using water vapor data from Weather Research and Forecasting (WRF) model’s assimilation results. We conduct six consecutive 24-h WRF forecasts to model the three-dimension (3D) distribution of water vapor in the South China region 20° N–33° N and 108° E–123° E from 0 h UTC April 06, 2020 to 0 h UTC April 11, 2020. GNSS Precipitable Water Vapor (PWV) from 27 stations of the Crustal Movement Observation Network of China (CMONOC) and meteorological profiles from 22 radiosonde stations are assimilated into WRF model to improve the water vapor modeling performance of WRF. Totally, four WRF schemes are adopted, i.e. WRF scheme 0: WRF without water vapor data assimilation; WRF scheme 1: WRF with GNSS PWV assimilation only; WRF scheme 2: WRF with radiosonde profiles assimilation only; WRF scheme 3: WRF with both GNSS PWV and radiosonde profiles assimilation.en_US
dcterms.abstractThe water vapor data from the four WRF schemes are used to augment Precise Point Positioning (PPP) by correcting GNSS wet delay at seven International GNSS Service (IGS) stations distributed in South China. The static PPP results show that using the water vapor correction data from different WRF schemes can improve PPP positioning accuracy by 29.5% to 42.3% in the vertical component of GNSS stations. In addition, the WRF-augmented PPP can shorten convergence time by 43.3% to 57.3% in the GNSS station vertical component, if using 10 cm positioning error as the convergence criterion. The kinematic PPP results show that WRF-augmented PPP can improve positioning accuracy in the vertical component by 20.0% to 33.6%.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationLecture notes in electrical engineering, 2021, v. 772, p. 653-670en_US
dcterms.isPartOfLecture notes in electrical engineeringen_US
dcterms.issued2021-
dc.identifier.scopus2-s2.0-85111411140-
dc.relation.conferenceChina Satellite Navigation Conference [CSNC]en_US
dc.identifier.eissn1876-1119en_US
dc.description.validate202305 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberLSGI-0031-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; The Emerging Frontier Area (EFA) Scheme of Research Institute for Sustainable Urban Development (RISUD) of the Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS56147952-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
Liu_Augmenting_Gnss_Ppp.pdfPre-Published version1.84 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

99
Citations as of Apr 14, 2025

Downloads

80
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

2
Citations as of Sep 12, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.