Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/100649
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Electrical and Electronic Engineeringen_US
dc.creatorZhao, Cen_US
dc.creatorHuang, Wen_US
dc.creatorLiu, Xen_US
dc.creatorOr, SWen_US
dc.creatorCui, Cen_US
dc.date.accessioned2023-08-11T03:11:31Z-
dc.date.available2023-08-11T03:11:31Z-
dc.identifier.issn1516-1439en_US
dc.identifier.urihttp://hdl.handle.net/10397/100649-
dc.language.isoenen_US
dc.publisherUniv Fed Sao Carlos, Dept Engenharia Materialsen_US
dc.rights© 2016en_US
dc.rightsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en_US
dc.rightsThe following publication Zhao, C., Huang, W., Liu, X., Or, S. W., & Cui, C. (2016). Microwave absorbing properties of NiFe2O4 nanosheets synthesized via a simple surfactant-assisted solution route. Materials Research, 19(5), 1149-1154 is available at https://doi.org/10.1590/1980-5373-MR-2015-0581.en_US
dc.subjectFerritesen_US
dc.subjectMicrowave absorbing materialsen_US
dc.subjectNanosheetsen_US
dc.subjectTransmission electron microscopyen_US
dc.titleMicrowave absorbing properties of NiFe₂O₄ nanosheets synthesized via a simple surfactant-assisted solution routeen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1149en_US
dc.identifier.epage1154en_US
dc.identifier.volume19en_US
dc.identifier.issue5en_US
dc.identifier.doi10.1590/1980-5373-MR-2015-0581en_US
dcterms.abstractNiFe₂O₄ nanosheets have been synthesized via a simple surfactant-assisted solution route, which are confirmed by X-ray powder diffraction, scanning electron microscopy and transmission electron microscopy. The NiFe₂O₄ sample exhibits the sheet-like structure, with width varying from 200 to 800 nm and thickness ranging from 20 to 60 nm. The electromagnetic properties of NiFe₂O₄ nanosheets-paraffin composites have been deeply investigated. The multiple dielectric relaxation loss in NiFe2O4 nanosheets is attributed to the size distribution and morphology of the NiFe₂O₄ nanosheets. The magnetic loss in the present system is caused mainly by the natural resonance. An absorber with a thickness of 4.3 mm exhibits an optimal reflection loss (RL) value of-47.1 dB at 7.67 GHz. RL values exceeding-20 dB in the 2.68-17.96 GHz range are obtained by choosing an appropriate absorption-layer thickness between 1.9 and 10 mm. Not only the RL peak frequency but also the number of the peaks can be well explained by the quarter-wavelength cancellation model.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMaterials research, 2016, v. 19, no. 5, p. 1149-1154en_US
dcterms.isPartOfMaterials researchen_US
dcterms.issued2016-
dc.identifier.scopus2-s2.0-84989966915-
dc.identifier.eissn1980-5373en_US
dc.description.validate202307 bckwen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberEE-0757-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; National College Students Innovation and entrepreneurship training program of China; Hong Kong Brach of National Rail Transit Electrification and Automation Engineering Technology Research Center by the Innovation and Technology of the HKSAR Governmenten_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6683816-
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Zhao_Microwave_Absorbing_Properties.pdf1.47 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

109
Last Week
2
Last month
Citations as of Nov 10, 2025

Downloads

40
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

23
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

20
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.