Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/100495
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Electrical and Electronic Engineering-
dc.creatorMusah, JDen_US
dc.creatorIlyas, AMen_US
dc.creatorVenkatesh, Sen_US
dc.creatorMensah, Sen_US
dc.creatorKwofie, Sen_US
dc.creatorRoy, VALen_US
dc.creatorWu, CMLen_US
dc.date.accessioned2023-08-11T03:06:21Z-
dc.date.available2023-08-11T03:06:21Z-
dc.identifier.issn2791-0091en_US
dc.identifier.urihttp://hdl.handle.net/10397/100495-
dc.language.isoenen_US
dc.publisherTsinghua University Pressen_US
dc.rights© The Author(s) 2022. Published by Tsinghua University Press. The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en_US
dc.rightsThe following publication Musah J-D, Ilyas AM, Venkatesh S, et al. Isovalent substitution in metal chalcogenide materials for improving thermoelectric power generation – A critical review. Nano Research Energy, 2022, 1(3): e9120034 is available at https://doi.org/10.26599/NRE.2022.9120034.en_US
dc.subjectIsovalent substitutionen_US
dc.subjectThermoelectric (TE)en_US
dc.subjectMetal chalcogenides (MC)en_US
dc.subjectPower factor (PF)en_US
dc.subjectFigure of merit (zT)en_US
dc.subjectThermoelectric generator (TEG)en_US
dc.titleIsovalent substitution in metal chalcogenide materials for improving thermoelectric power generation – A critical reviewen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume1en_US
dc.identifier.issue3en_US
dc.identifier.doi10.26599/NRE.2022.9120034en_US
dcterms.abstractThe adverse effect of fossil fuels on the environment is driving research to explore alternative energy sources. Research studies have demonstrated that renewables can offer a promising strategy to curb the problem, among which thermoelectric technology stands tall. However, the challenge with thermoelectric materials comes from the conflicting property of the Seebeck coefficient and the electrical conductivity resulting in a low power factor and hence a lower figure of merit. Researchers have reported various techniques to enhance the figure of merit, particularly in metal chalcogenide thermoelectric materials. Here we present a review on isovalent substitution as a tool to decouple the interdependency of the electrical conductivity and Seebeck coefficient to facilitate simultaneous enhancement in these two parameters. This is proven true in both cationic and anionic side substitutions in metal chalcogenide thermoelectric materials. Numerous publications relating to isovalent substitution in metal chalcogenide thermoelectric are reviewed. This will serve as a direction for current and future research to enhance thermoelectric performance and device application. This review substantiates the role of isovalent substitution in enhancing metal chalcogenide thermoelectric properties compared with conventional systems.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationNano research energy, Dec. 2022, v. 1, no. 3, e9120034en_US
dcterms.isPartOfNano research energyen_US
dcterms.issued2022-12-
dc.identifier.scopus2-s2.0-85142432903-
dc.identifier.eissn2790-8119en_US
dc.identifier.artne9120034en_US
dc.description.validate202308 bcch-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Musah_Isovalent_Substitution_Metal.pdf4.55 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

84
Last Week
1
Last month
Citations as of Nov 9, 2025

Downloads

124
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

47
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.