Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/100455
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.creatorTian, Pen_US
dc.creatorTang, Len_US
dc.creatorXiang, Jen_US
dc.creatorSun, Zen_US
dc.creatorJi, Ren_US
dc.creatorLai, SKen_US
dc.creatorLau, SPen_US
dc.creatorKong, Jen_US
dc.creatorZhao, Jen_US
dc.creatorYang, Cen_US
dc.creatorLi, Yen_US
dc.date.accessioned2023-08-08T01:56:20Z-
dc.date.available2023-08-08T01:56:20Z-
dc.identifier.urihttp://hdl.handle.net/10397/100455-
dc.language.isoenen_US
dc.publisherRoyal Society of Chemistryen_US
dc.rightsThis journal is © The Royal Society of Chemistry 2016en_US
dc.rightsThe following publication Tian, P., Tang, L., Xiang, J., Sun, Z., Ji, R., Lai, S. K., . . . Li, Y. (2016). Solution processable high-performance infrared organic photodetector by iodine doping. RSC Advances, 6(51), 45166-45171 is available at https://doi.org/10.1039/c6ra02773c.en_US
dc.titleSolution processable high-performance infrared organic photodetector by iodine dopingen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage45166en_US
dc.identifier.epage45171en_US
dc.identifier.volume6en_US
dc.identifier.issue51en_US
dc.identifier.doi10.1039/c6ra02773cen_US
dcterms.abstractSolution processable high-performance, large-area, low-cost infrared organic photodetectors (OPDs) have been receiving more and more attention for their important applications both in scientific and technological fields. The search for a simple method to upgrade device performance for OPDs becomes increasingly important. Here, the performance of an OPD in the near-infrared (NIR) region is tremendously improved by doping iodine into the device's active layer (P3HT:PCBM:I2), 2.7 wt% iodine doping may increase the absorption by 31.3% for the active film and result in a ∼11000-fold increase in responsivity for the detector. A high detectivity (D∗) of ∼1.6 × 1012 cm Hz1/2 W-1, a good specific responsivity (R) of ∼80 A W-1 and a large EQE (external quantum efficiency) of 120% are achieved under illumination (λ = 850 nm) at room temperature. Systematic characterizations reveal that iodine-doping can introduce acceptor states in the energy band gap for the polymer layer, and thus increase the harvesting to long wavelength photons. A small dose of iodine doping can significantly induce improvement in device performance. This work demonstrates a simple but feasible method to enhance an NIR optoelectronics device.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationRSC advances, 2016, v. 6, no. 51, p. 45166-45171en_US
dcterms.isPartOfRSC advancesen_US
dcterms.issued2016-
dc.identifier.scopus2-s2.0-84969940405-
dc.identifier.eissn2046-2069en_US
dc.description.validate202308 bcvcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAP-0831-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; The Key Project of Applied Basic Research of Yunnan Province, Chinaen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6645563-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Lau_Solution_Processable_High-Performance.pdfPre-Published version583.12 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

98
Citations as of Apr 14, 2025

Downloads

49
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

25
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

22
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.