Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/100436
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physics-
dc.contributorSchool of Fashion and Textiles-
dc.creatorZhang, Fen_US
dc.creatorFang, YWen_US
dc.creatorChan, NYen_US
dc.creatorLo, WCen_US
dc.creatorLi, DFen_US
dc.creatorDuan, CGen_US
dc.creatorDing, Fen_US
dc.creatorDai, JYen_US
dc.date.accessioned2023-08-08T01:56:10Z-
dc.date.available2023-08-08T01:56:10Z-
dc.identifier.issn2469-9950en_US
dc.identifier.urihttp://hdl.handle.net/10397/100436-
dc.language.isoenen_US
dc.publisherAmerican Physical Societyen_US
dc.rights© 2016 American Physical Societyen_US
dc.rightsThe following publication Zhang, F., Fang, Y. -., Chan, N. Y., Lo, W. C., Li, D. F., Duan, C. -., . . . Dai, J. Y. (2016). Dynamic modulation of the transport properties of the LaAl O3/SrTi O3 interface using uniaxial strain. Physical Review B, 93(21), 214427 is available at https://doi.org/10.1103/PhysRevB.93.214427.en_US
dc.titleDynamic modulation of the transport properties of the LaAlo3/SrTi O3 interface using uniaxial strainen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume93en_US
dc.identifier.issue21en_US
dc.identifier.doi10.1103/PhysRevB.93.214427en_US
dcterms.abstractAmong the interfacial transport modulations to the LaAlO3/SrTiO3 (LAO/STO) heterostructure, mechanical strain has been proven to be an effective approach by growing the LAO/STO films on different substrates with varying lattice mismatches to STO. However, this lattice-mismatch-induced strain effect is static and biaxial, hindering the study of the strain effect in a dynamic way. In this work we realize dynamic and uniaxial strain to the LAO/STO oxide heterostructure at low temperature, through mechanical coupling from a magnetostrictive template. This anisotropic strain results in symmetry breaking at the interface and induces further splitting of the electronic band structure and therefore produces different conductivities along the x and y in-plane directions. In particular, we observe that along the strained direction the interface conductivity decreases by up to 70% under a tensile strain, while it increases by 6.8% under a compressive strain at 2 K. Also, it is revealed that the modulation on the interfacial transport property can be anisotropic, i.e., the resistance changes differently when an excitation current is parallel or perpendicular to the strain direction. This approach of strain engineering provides another degree of freedom for control of transport properties of oxide heterostructures and opens an additional way to investigate strain effects in materials science.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationPhysical review B : covering condensed matter and materials physics, 1 June 2016, v. 93, no. 21, 214427en_US
dcterms.isPartOfPhysical review B : covering condensed matter and materials physicsen_US
dcterms.issued2016-06-01-
dc.identifier.scopus2-s2.0-84976492126-
dc.identifier.eissn2469-9969en_US
dc.identifier.artn214427en_US
dc.description.validate202308 bcvc-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberAP-0776-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe NSFC; The Hong Kong Polytechnic University; The National Basic Research Program of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6654827-
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
PhysRevB.93.214427.pdf1.66 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

105
Last Week
2
Last month
Citations as of Nov 10, 2025

Downloads

64
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

13
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

13
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.