Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/100335
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorMainland Development Officeen_US
dc.contributorDepartment of Applied Physicsen_US
dc.creatorMa, Sen_US
dc.creatorYuan, Hen_US
dc.creatorCai, Len_US
dc.creatorWang, Xen_US
dc.creatorLong, Hen_US
dc.creatorChai, Yen_US
dc.creatorTsang, YHen_US
dc.date.accessioned2023-08-08T01:55:08Z-
dc.date.available2023-08-08T01:55:08Z-
dc.identifier.issn2468-5194en_US
dc.identifier.urihttp://hdl.handle.net/10397/100335-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2018 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Ma, S., Yuan, H., Cai, L., Wang, X., Long, H., Chai, Y., & Tsang, Y. H. (2018). One step synthesis of Fe4. 4Ni17. 6Se16 coupled NiSe foam as self-supported, highly efficient and durable oxygen evolution electrode. Materials today chemistry, 9, 133-139 is available at https://doi.org/10.1016/j.mtchem.2018.05.003.en_US
dc.subjectElectrocatalysten_US
dc.subjectFe4.4Ni17.6Se16/NiSe hybriden_US
dc.subjectHeterointerfacesen_US
dc.subjectOxygen evolution reactionen_US
dc.subjectThermal selenizationen_US
dc.titleOne step synthesis of Fe4.4Ni17.6Se16 coupled nise foam as self-supported, highly efficient and durable oxygen evolution electrodeen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage133en_US
dc.identifier.epage139en_US
dc.identifier.volume9en_US
dc.identifier.doi10.1016/j.mtchem.2018.05.003en_US
dcterms.abstractThe development of cost-effective, durable and high-efficient oxygen evolution reaction (OER) electrocatalysts is an extremely critical technology for the large-scale industrial water electrolysis. Here, a new strategy is proposed to significantly enhance the electrocatalytic activity by forming a hybrid electrode of NiSe and Fe4.4Ni17.6Se16 through direct selenization of porous iron-nickel (FeNi) alloy foam via thermal selenization process. The obtained self-supported Fe4.4Ni17.6Se16/NiSe hybrid (FNS/NiSe) foam displays outstanding durability and remarkable catalytic activity in 1.0 M KOH with low overpotentials of 242 and 282 mV to achieve the current densities of 100 and 500 mA cm−2, respectively. To the best of our knowledge, it exceeds most of the reported OER electrocatalysts in alkaline electrolytes.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMaterials today chemistry, Sept. 2018, v. 9, p. 133-139en_US
dcterms.isPartOfMaterials today chemistryen_US
dcterms.issued2018-09-
dc.identifier.scopus2-s2.0-85050181259-
dc.description.validate202308 bcvcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAP-0454-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe National Natural Science Foundation of China; Shenzhen Science and Technology Innovation Commissionen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS24334595-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Ma_One_Step_Synthesis.pdfPre-Published version1.46 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

62
Citations as of Apr 14, 2025

Downloads

40
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

12
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

8
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.