Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/100318
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.creatorLin, Xen_US
dc.creatorHuang, Jen_US
dc.creatorTan, Hen_US
dc.creatorHuang, Jen_US
dc.creatorZhang, Ben_US
dc.date.accessioned2023-08-08T01:54:58Z-
dc.date.available2023-08-08T01:54:58Z-
dc.identifier.issn2405-8297en_US
dc.identifier.urihttp://hdl.handle.net/10397/100318-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2018 Published by Elsevier B.V.en_US
dc.rights© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Lin, X., Huang, J., Tan, H., Huang, J., & Zhang, B. (2019). K3V2 (PO4) 2F3 as a robust cathode for potassium-ion batteries. Energy Storage Materials, 16, 97-101 is available at https://doi.org/10.1016/j.ensm.2018.04.026.en_US
dc.subjectCathodesen_US
dc.subjectFull cellsen_US
dc.subjectIn-situ X-ray diffractionen_US
dc.subjectPotassium-ion batteriesen_US
dc.titleK₃V₂(PO₄)₂F₃ as a robust cathode for potassium-ion batteriesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage97en_US
dc.identifier.epage101en_US
dc.identifier.volume16en_US
dc.identifier.doi10.1016/j.ensm.2018.04.026en_US
dcterms.abstractPotassium-ion batteries have emerged as promising candidates for low-cost and sustainable energy storage systems. The development of potassium-ion batteries is relatively slow due to the large size of potassium ions, rendering great difficulty in designing appropriate host materials. Herein, a K₃V₂(PO₄)₂F₃ cathode is inherited from Na₃V₂(PO₄)₂F₃ analog. The crystallographic structure and phase transformations are unveiled through in-situ X-ray diffraction, which shows only minor volume change of 6.2% during potassium ions insertion/extraction. Nearly two potassium ions could be provided by the electrode, delivering a capacity of over 100 mA h g⁻¹ with a high average potential of ~3.7 V vs. K+/K. An energy density of around 400 W h kg⁻¹ together with a respectable rate capability have been obtained. Coupling with a graphite anode, a 3.4 V-Class battery has been demonstrated, making potassium-ion batteries promising contenders to sodium ion batteries in large-scale energy storage. This discovery also sheds insights into the quest for potential electrodes from the analogs in Li/Na-ion batteries.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationEnergy storage materials, Jan. 2019, v. 16, p. 97-101en_US
dcterms.isPartOfEnergy storage materialsen_US
dcterms.issued2019-01-
dc.identifier.scopus2-s2.0-85046692021-
dc.identifier.eissn2405-8289en_US
dc.description.validate202308 bcvcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAP-0398-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Hong Kong Polytechnic University; The Innovation and Technology Commissionen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6838497-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Lin_Robust_Cathode_Potassium.pdfPre-Published version1.85 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

89
Citations as of Apr 14, 2025

Downloads

133
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

189
Citations as of Aug 22, 2025

WEB OF SCIENCETM
Citations

158
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.