Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/100296
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.contributorMainland Development Officeen_US
dc.creatorHuang, Jen_US
dc.creatorGuo, Xen_US
dc.creatorDu, Xen_US
dc.creatorLin, Xen_US
dc.creatorHuang, JQen_US
dc.creatorTan, Hen_US
dc.creatorZhu, Yen_US
dc.creatorZhang, Ben_US
dc.date.accessioned2023-08-08T01:54:43Z-
dc.date.available2023-08-08T01:54:43Z-
dc.identifier.issn1754-5692en_US
dc.identifier.urihttp://hdl.handle.net/10397/100296-
dc.language.isoenen_US
dc.publisherRoyal Society of Chemistryen_US
dc.rightsThis journal is © The Royal Society of Chemistry 2019en_US
dc.rightsThe following publication Huang, J., Guo, X., Du, X., Lin, X., Huang, J. Q., Tan, H., ... & Zhang, B. (2019). Nanostructures of solid electrolyte interphases and their consequences for microsized Sn anodes in sodium ion batteries. Energy & Environmental Science, 12(5), 1550-1557 is available at https://doi.org/10.1039/c8ee03632b.en_US
dc.titleNanostructures of solid electrolyte interphases and their consequences for microsized Sn anodes in sodium ion batteriesen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationTitle on author’s file: Nanostructure of solid electrolyte interphases and its consequences for microsized Sn anodes in sodium ion batteryen_US
dc.identifier.spage1550en_US
dc.identifier.epage1557en_US
dc.identifier.volume12en_US
dc.identifier.issue5en_US
dc.identifier.doi10.1039/c8ee03632ben_US
dcterms.abstractThere has been increasing evidence that ether-based electrolytes offer more stable anode performance in sodium ion batteries, even for microsized alloy electrodes which suffer huge volume change upon charge/discharge cycling. It is speculated that ether-based electrolytes may give rise to more robust solid electrolyte interphases (SEIs), but the detailed mechanism remains unknown, due to the structural complexity and the extremely vulnerable nature of SEIs. In this work, we unveil the characteristic SEI structure at Sn electrode surfaces in both carbonate- and ether-based electrolytes. We adopt cryogenic transmission electron microscopy to probe the pristine SEI structure, in combination with X-ray photoelectron spectroscopy and density functional theory calculations. An ultrathin SEI forms in the ether-based electrolyte, with amorphous particles dispersed in the polymer-like matrix. This unique nanostructure exhibits superior mechanical elasticity and renders anomalous stability against the large volume change of alloy electrodes, as evidenced by both electrochemistry measurement and atomic force microscopy. Our work unravels the causes for the superiority of ether-based electrolytes in sodium-ion batteries, and we expect the potential of such an optimized SEI to enable the application of high-capacity anodes such as microsized alloys.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationEnergy and environmental science, 1 May 2019, v. 12, no. 5, p. 1550-1557en_US
dcterms.isPartOfEnergy and environmental scienceen_US
dcterms.issued2019-05-01-
dc.identifier.scopus2-s2.0-85065994624-
dc.identifier.eissn1754-5706en_US
dc.description.validate202308 bcvcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAP-0353-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Hong Kong Polytechnic University; The Innovation and Technology Commissionen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS20901010-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Huang_Nanostructures_Solid_Electrolyte.pdfPre-Published version2.09 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

77
Citations as of Apr 14, 2025

Downloads

165
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

214
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

182
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.