Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/100294
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.creatorYing, Yen_US
dc.creatorFan, Ken_US
dc.creatorLuo, Xen_US
dc.creatorHuang, Hen_US
dc.date.accessioned2023-08-08T01:54:42Z-
dc.date.available2023-08-08T01:54:42Z-
dc.identifier.issn2050-7488en_US
dc.identifier.urihttp://hdl.handle.net/10397/100294-
dc.language.isoenen_US
dc.publisherRoyal Society of Chemistryen_US
dc.rightsThis journal is © The Royal Society of Chemistry 2019en_US
dc.rightsThe following publication Ying, Y., Fan, K., Luo, X., & Huang, H. (2019). Predicting two-dimensional pentagonal transition metal monophosphides for efficient electrocatalytic nitrogen reduction. Journal of Materials Chemistry A, 7(18), 11444-11451 is available at https://doi.org/10.1039/c8ta11605a.en_US
dc.titlePredicting two-dimensional pentagonal transition metal monophosphides for efficient electrocatalytic nitrogen reductionen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage11444en_US
dc.identifier.epage11451en_US
dc.identifier.volume7en_US
dc.identifier.issue18en_US
dc.identifier.doi10.1039/c8ta11605aen_US
dcterms.abstractElectrocatalytic reduction of nitrogen (N2) to ammonia (NH3), as an alternative to traditional energy-consuming Haber-Bosch nitrogen fixation, is a fascinating yet challenging topic. Here, we design a novel group of materials - two-dimensional (2D) pentagonal transition metal phosphides (penta-MP, M = Ti, Zr, Hf) - and study their potential applications in the nitrogen reduction reaction (NRR). Penta-MP are predicted to be dynamically, thermally, and mechanically stable through density functional theory calculations and ab initio molecular dynamics simulations. Their quasi-planar structures and metallic properties facilitate strong N2 adsorption on the surface. The Gibbs free energy diagram suggests that the NRR on penta-MP prefers the distal reaction mechanism, with a low overpotential of 0.56 eV for penta-TiP, which is beneficial for efficient electrocatalytic NRR. Our findings open up a new avenue for designing novel 2D materials as well as electrocatalysts.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of materials chemistry A, 14 May 2019, v. 7, no. 18, p. 11444-11451en_US
dcterms.isPartOfJournal of materials chemistry Aen_US
dcterms.issued2019-05-14-
dc.identifier.scopus2-s2.0-85065535003-
dc.identifier.eissn2050-7496en_US
dc.description.validate202308 bcvcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAP-0347-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Hong Kong Polytechnic University; The NSFCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS25850928-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Ying_Predicting_Two-Dimensional_Pentagonal.pdfPre-Published version1.77 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

64
Citations as of Apr 14, 2025

Downloads

95
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

58
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

53
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.