Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/100288
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.contributorDepartment of Applied Biology and Chemical Technologyen_US
dc.creatorLi, Gen_US
dc.creatorMeng, Zen_US
dc.creatorQian, Jen_US
dc.creatorHo, CLen_US
dc.creatorLau, SPen_US
dc.creatorWong, WYen_US
dc.creatorYan, Fen_US
dc.date.accessioned2023-08-08T01:54:38Z-
dc.date.available2023-08-08T01:54:38Z-
dc.identifier.issn2468-6069en_US
dc.identifier.urihttp://hdl.handle.net/10397/100288-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2019 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Li, G., Meng, Z., Qian, J., Ho, C. L., Lau, S. P., Wong, W. Y., & Yan, F. (2019). Inkjet printed pseudocapacitive electrodes on laser-induced graphene for electrochemical energy storage. Materials Today Energy, 12, 155-160 is available at https://doi.org/10.1016/j.mtener.2019.01.005.en_US
dc.titleInkjet printed pseudocapacitive electrodes on laser-induced graphene for electrochemical energy storageen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage155en_US
dc.identifier.epage160en_US
dc.identifier.volume12en_US
dc.identifier.doi10.1016/j.mtener.2019.01.005en_US
dcterms.abstractPseudocapacitance boosts the capacitance of supercapacitors by introducing additional redox sites with fast faradaic reactions. Here, we demonstrate the preparation of pseudocapacitive electrodes by inkjet printing bis-terpyridyl based molecular cobalt complexes as pseudocapacitive additives on laser induced graphene films. The substrate temperature during inkjet printing can effectively tune the morphology of the pseudocapacitive additives by overcoming the influence of coffee ring effect. Under optimum conditions, the capacitance of the pseudocapacitive electrodes was enhanced for 75 times over pristine graphene films. This approach can also be employed for the deposition of other functional materials via inkjet printing.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMaterials today energy, June 2019, v. 12, p. 155-160en_US
dcterms.isPartOfMaterials today energyen_US
dcterms.issued2019-06-
dc.identifier.scopus2-s2.0-85060874768-
dc.description.validate202308 bcvcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAP-0333-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Hong Kong Polytechnic University; The National Natural Science Foundation of China; the Science,Technology and Innovation Committee of Shenzhen Municipalityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS12965100-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Li_Inkjet_Printed_Pseudocapacitive.pdfPre-Published version2.07 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

90
Citations as of Apr 14, 2025

Downloads

59
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

40
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

38
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.