Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/100280
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.creatorYip, CTen_US
dc.creatorLo, TWen_US
dc.creatorZhu, SCen_US
dc.creatorJia, GYen_US
dc.creatorSun, Hen_US
dc.creatorLam, CHen_US
dc.creatorLei, Den_US
dc.date.accessioned2023-08-08T01:54:32Z-
dc.date.available2023-08-08T01:54:32Z-
dc.identifier.issn2055-6756en_US
dc.identifier.urihttp://hdl.handle.net/10397/100280-
dc.language.isoenen_US
dc.publisherRoyal Society of Chemistryen_US
dc.rightsThis journal is © The Royal Society of Chemistry 2019en_US
dc.rightsThe following publication Yip, C. T., Lo, T. W., Zhu, S. C., Jia, G. Y., Sun, H., Lam, C. H., & Lei, D. (2019). Tight-binding modeling of excitonic response in van der Waals stacked 2D semiconductors. Nanoscale Horizons, 4(4), 969-974 is available at https://doi.org/10.1039/c9nh00042a.en_US
dc.titleTight-binding modeling of excitonic response in van der Waals stacked 2D semiconductorsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage969en_US
dc.identifier.epage974en_US
dc.identifier.volume4en_US
dc.identifier.issue4en_US
dc.identifier.doi10.1039/c9nh00042aen_US
dcterms.abstractAtomically thin transition metal dichalcogenides (TMDCs) exhibit fascinating excitonic properties which are of critical importance for potential applications in nanoscale optoelectronics. In particular, stacked TMDC layers without lattice mismatch allow modulation of their band structures and optoelectronic properties through manipulation of the constituent materials along the stacking direction. Current understanding of TMDC layer-by-layer structures is mainly based on optical measurements and DFT calculations. In this work, we use a phenomenological tight-binding model, combined with DFT calculations, to understand the measured layer-dependent excitonic response of WS2. This explicit and effective model can quantitatively predict the layer-dependent excitonic states and can also be used to study interlayer excitons (direct and indirect exciton states) in TMDC multilayer structures. In addition, we find that the temperature dependence of the A exciton emission energy of monolayer WS2 can be well described with the Varshni formula, and that the emission intensity variation with temperature is associated with thermal redistribution of exciton population and increased non-radiative damping due to the enhanced electron-phonon interaction at elevated temperatures.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationNanoscale horizons, 1 July 2019, v. 4, no. 4, p. 969-974en_US
dcterms.isPartOfNanoscale horizonsen_US
dcterms.issued2019-07-01-
dc.identifier.scopus2-s2.0-85067970932-
dc.identifier.eissn2055-6764en_US
dc.description.validate202308 bcvcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAP-0313-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextShenzhen Municipal Science and Technology projectsen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS21784770-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Lo_Tight-Binding_Modeling_Excitonic.pdfPre-Published version1.41 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

87
Citations as of Apr 14, 2025

Downloads

63
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

16
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

16
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.